Timezone: »
Preferential Bayesian optimization (PBO) is a framework for optimization of a decision-maker's (DM's) latent preferences. Existing work in PBO assumes these preferences can be encoded by a single latent utility function, which is then estimated from ordinal preference feedback over design variables. In practice, however, it is often challenging for DMs to provide such feedback reliably, leading to poor performance. This is especially true when multiple conflicting latent attributes govern the DM's preferences. For example, in exoskeleton personalization, users' preferences over gait designs are influenced by stability and walking speed, which can conflict with each other. We posit this is a primary reason why inconsistent preferences are often observed in practice. To address this challenge, we propose a framework for preferential multi-attribute Bayesian optimization, where the goal is to help DMs efficiently explore the Pareto front of their preferences over attributes. Within this framework, we propose a Thompson sampling-based strategy to select new queries and show it performs well across three test problems, including a simulated exoskeleton gait personalization task.
Author Information
Raul Astudillo (California Institute of Technology)
Amy Li (Caltech)
Maegan Tucker (California Institute of Technology)
Chu Xin Cheng (California Institute of Technology)
Aaron Ames (Caltech)
Yisong Yue (Caltech & Latitude AI)

Yisong Yue is a Professor of Computing and Mathematical Sciences at Caltech and (via sabbatical) a Principal Scientist at Latitude AI. His research interests span both fundamental and applied pursuits, from novel learning-theoretic frameworks all the way to deep learning deployed in autonomous driving on public roads. His work has been recognized with multiple paper awards and nominations, including in robotics, computer vision, sports analytics, machine learning for health, and information retrieval. At Latitude AI, he is working on machine learning approaches to motion planning for autonomous driving.
More from the Same Authors
-
2023 : Dueling Bandits for Online Preference Learning »
Yisong Yue -
2023 Poster: Learning Regions of Interest for Bayesian Optimization with Adaptive Level-Set Estimation »
Fengxue Zhang · Jialin Song · James Bowden · Alexander Ladd · Yisong Yue · Thomas Desautels · Yuxin Chen -
2023 Poster: MABe22: A Multi-Species Multi-Task Benchmark for Learned Representations of Behavior »
Jennifer J. Sun · Markus Marks · Andrew Ulmer · Dipam Chakraborty · Brian Geuther · Edward Hayes · Heng Jia · Vivek Kumar · Sebastian Oleszko · Zachary Partridge · Milan Peelman · Alice Robie · Catherine Schretter · Keith Sheppard · Chao Sun · Param Uttarwar · Julian Wagner · Erik Werner · Joseph Parker · Pietro Perona · Yisong Yue · Kristin Branson · Ann Kennedy -
2023 Poster: Eventual Discounting Temporal Logic Counterfactual Experience Replay »
Cameron Voloshin · Abhinav Verma · Yisong Yue -
2022 Workshop: Adaptive Experimental Design and Active Learning in the Real World »
Mojmir Mutny · Willie Neiswanger · Ilija Bogunovic · Stefano Ermon · Yisong Yue · Andreas Krause -
2022 Poster: Investigating Generalization by Controlling Normalized Margin »
Alexander Farhang · Jeremy Bernstein · Kushal Tirumala · Yang Liu · Yisong Yue -
2022 Spotlight: Investigating Generalization by Controlling Normalized Margin »
Alexander Farhang · Jeremy Bernstein · Kushal Tirumala · Yang Liu · Yisong Yue -
2022 Poster: LyaNet: A Lyapunov Framework for Training Neural ODEs »
Ivan Dario Jimenez Rodriguez · Aaron Ames · Yisong Yue -
2022 Spotlight: LyaNet: A Lyapunov Framework for Training Neural ODEs »
Ivan Dario Jimenez Rodriguez · Aaron Ames · Yisong Yue -
2021 : Personalized Preference Learning - from Spinal Cord Stimulation to Exoskeletons »
Yisong Yue -
2021 Poster: Learning by Turning: Neural Architecture Aware Optimisation »
Yang Liu · Jeremy Bernstein · Markus Meister · Yisong Yue -
2021 Spotlight: Learning by Turning: Neural Architecture Aware Optimisation »
Yang Liu · Jeremy Bernstein · Markus Meister · Yisong Yue -
2020 Workshop: Real World Experiment Design and Active Learning »
Ilija Bogunovic · Willie Neiswanger · Yisong Yue -
2020 Poster: Learning Calibratable Policies using Programmatic Style-Consistency »
Eric Zhan · Albert Tseng · Yisong Yue · Adith Swaminathan · Matthew Hausknecht -
2020 Poster: Multiresolution Tensor Learning for Efficient and Interpretable Spatial Analysis »
Jung Yeon Park · Kenneth Carr · Stephan Zheng · Yisong Yue · Rose Yu -
2019 Workshop: Real-world Sequential Decision Making: Reinforcement Learning and Beyond »
Hoang Le · Yisong Yue · Adith Swaminathan · Byron Boots · Ching-An Cheng -
2019 Poster: Batch Policy Learning under Constraints »
Hoang Le · Cameron Voloshin · Yisong Yue -
2019 Oral: Batch Policy Learning under Constraints »
Hoang Le · Cameron Voloshin · Yisong Yue -
2019 Poster: Control Regularization for Reduced Variance Reinforcement Learning »
Richard Cheng · Abhinav Verma · Gabor Orosz · Swarat Chaudhuri · Yisong Yue · Joel Burdick -
2019 Oral: Control Regularization for Reduced Variance Reinforcement Learning »
Richard Cheng · Abhinav Verma · Gabor Orosz · Swarat Chaudhuri · Yisong Yue · Joel Burdick -
2018 Poster: Iterative Amortized Inference »
Joe Marino · Yisong Yue · Stephan Mandt -
2018 Poster: Hierarchical Imitation and Reinforcement Learning »
Hoang Le · Nan Jiang · Alekh Agarwal · Miroslav Dudik · Yisong Yue · Hal Daumé III -
2018 Oral: Iterative Amortized Inference »
Joe Marino · Yisong Yue · Stephan Mandt -
2018 Oral: Hierarchical Imitation and Reinforcement Learning »
Hoang Le · Nan Jiang · Alekh Agarwal · Miroslav Dudik · Yisong Yue · Hal Daumé III -
2018 Poster: Stagewise Safe Bayesian Optimization with Gaussian Processes »
Yanan Sui · Vincent Zhuang · Joel Burdick · Yisong Yue -
2018 Oral: Stagewise Safe Bayesian Optimization with Gaussian Processes »
Yanan Sui · Vincent Zhuang · Joel Burdick · Yisong Yue -
2018 Tutorial: Imitation Learning »
Yisong Yue · Hoang Le -
2017 Poster: Coordinated Multi-Agent Imitation Learning »
Hoang Le · Yisong Yue · Peter Carr · Patrick Lucey -
2017 Talk: Coordinated Multi-Agent Imitation Learning »
Hoang Le · Yisong Yue · Peter Carr · Patrick Lucey