Timezone: »
Hierarchical reinforcement learning allows an agent to effectively solve complex tasks by leveraging the compositional structures of tasks and executing a sequence of skills. However, our examination shows that prior work focuses on learning individual skills without considering how to efficiently combine them, which can lead to sub-optimal performance.To address this problem, we propose a novel framework, called second-order skills (SOS), for learning skills to facilitate the efficient execution of skills in sequence. Specifically, second order skills (which can be generalized to higher orders) aim to learn skills from an extended perspective that takes into account the next skill required to accomplish a task.We theoretically demonstrate that our method guarantees more efficient performance in the downstream task compared to previous approaches that do not consider second-order skills. Also, our empirical experiments show that learning second-order skills results in improved learning performance compared to state-of-the-art in baselines across diverse benchmark domains.
Author Information
Anthony Liu (University of Michigan)
Dong Ki Kim (MIT)
Dong-Ki Kim is a PhD candidate at Massachusetts Institute of Technology. His research focuses on multiagent reinforcement learning, developing algorithms that enable AI agents to interact with other simultaneously learning agents, share knowledge with other teammates, and learn robust policies against opponents. His work has received the best student paper honorable mention at AAAI'19 and featured in NVIDIA, WIRED, and MIT news. Previously, He completed a B.S. degree with Summa Cum Laude at Cornell University. He also worked at the Robotics Institute, Carnegie Mellon University, and Toyota Technological Institute at Chicago researching machine learning and robotics.
Sungryull Sohn (LG AI research center, Ann Arbor)
Honglak Lee (LG AI Research / U. Michigan)
More from the Same Authors
-
2021 : Learning Action Translator for Meta Reinforcement Learning on Sparse-Reward Tasks »
Yijie Guo · Qiucheng Wu · Honglak Lee -
2023 : Regularizing Model Gradients with Concepts to Improve Robustness to Spurious Correlations »
Yiwei Yang · Anthony Liu · Robert Wolfe · Aylin Caliskan · Bill Howe -
2023 : Guide Your Agent with Adaptive Multimodal Rewards »
Changyeon Kim · Younggyo Seo · Hao Liu · Lisa Lee · Jinwoo Shin · Honglak Lee · Kimin Lee -
2023 : Hierarchical Decomposition Framework for Feasibility-hard Combinatorial Optimization »
Hanbum Ko · Minu Kim · Han-Seul Jeong · Sunghoon Hong · Deunsol Yoon · Youngjoon Park · Woohyung Lim · Honglak Lee · Moontae Lee · Kanghoon Lee · Sungbin Lim · Sungryull Sohn -
2023 : Mixed-Curvature Transformers for Graph Representation Learning »
Sungjun Cho · Seunghyuk Cho · Sungwoo Park · Hankook Lee · Honglak Lee · Moontae Lee -
2023 Poster: Go Beyond Imagination: Maximizing Episodic Reachability with World Models »
Yao Fu · Run Peng · Honglak Lee -
2021 Poster: Learning to Weight Imperfect Demonstrations »
Yunke Wang · Chang Xu · Bo Du · Honglak Lee -
2021 Poster: Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks »
Sungryull Sohn · Sungtae Lee · Jongwook Choi · Harm van Seijen · Mehdi Fatemi · Honglak Lee -
2021 Poster: Variational Empowerment as Representation Learning for Goal-Conditioned Reinforcement Learning »
Jongwook Choi · Archit Sharma · Honglak Lee · Sergey Levine · Shixiang Gu -
2021 Spotlight: Variational Empowerment as Representation Learning for Goal-Conditioned Reinforcement Learning »
Jongwook Choi · Archit Sharma · Honglak Lee · Sergey Levine · Shixiang Gu -
2021 Spotlight: Learning to Weight Imperfect Demonstrations »
Yunke Wang · Chang Xu · Bo Du · Honglak Lee -
2021 Spotlight: Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks »
Sungryull Sohn · Sungtae Lee · Jongwook Choi · Harm van Seijen · Mehdi Fatemi · Honglak Lee -
2021 Poster: State Entropy Maximization with Random Encoders for Efficient Exploration »
Younggyo Seo · Lili Chen · Jinwoo Shin · Honglak Lee · Pieter Abbeel · Kimin Lee -
2021 Poster: A Policy Gradient Algorithm for Learning to Learn in Multiagent Reinforcement Learning »
Dong Ki Kim · Miao Liu · Matthew Riemer · Chuangchuang Sun · Marwa Abdulhai · Golnaz Habibi · Sebastian Lopez-Cot · Gerald Tesauro · Jonathan How -
2021 Spotlight: State Entropy Maximization with Random Encoders for Efficient Exploration »
Younggyo Seo · Lili Chen · Jinwoo Shin · Honglak Lee · Pieter Abbeel · Kimin Lee -
2021 Spotlight: A Policy Gradient Algorithm for Learning to Learn in Multiagent Reinforcement Learning »
Dong Ki Kim · Miao Liu · Matthew Riemer · Chuangchuang Sun · Marwa Abdulhai · Golnaz Habibi · Sebastian Lopez-Cot · Gerald Tesauro · Jonathan How -
2020 Poster: Context-aware Dynamics Model for Generalization in Model-Based Reinforcement Learning »
Kimin Lee · Younggyo Seo · Seunghyun Lee · Honglak Lee · Jinwoo Shin -
2019 Poster: Learning Latent Dynamics for Planning from Pixels »
Danijar Hafner · Timothy Lillicrap · Ian Fischer · Ruben Villegas · David Ha · Honglak Lee · James Davidson -
2019 Poster: Robust Inference via Generative Classifiers for Handling Noisy Labels »
Kimin Lee · Sukmin Yun · Kibok Lee · Honglak Lee · Bo Li · Jinwoo Shin -
2019 Poster: Similarity of Neural Network Representations Revisited »
Simon Kornblith · Mohammad Norouzi · Honglak Lee · Geoffrey Hinton -
2019 Oral: Similarity of Neural Network Representations Revisited »
Simon Kornblith · Mohammad Norouzi · Honglak Lee · Geoffrey Hinton -
2019 Oral: Robust Inference via Generative Classifiers for Handling Noisy Labels »
Kimin Lee · Sukmin Yun · Kibok Lee · Honglak Lee · Bo Li · Jinwoo Shin -
2019 Oral: Learning Latent Dynamics for Planning from Pixels »
Danijar Hafner · Timothy Lillicrap · Ian Fischer · Ruben Villegas · David Ha · Honglak Lee · James Davidson -
2018 Poster: Self-Imitation Learning »
Junhyuk Oh · Yijie Guo · Satinder Singh · Honglak Lee -
2018 Oral: Self-Imitation Learning »
Junhyuk Oh · Yijie Guo · Satinder Singh · Honglak Lee -
2018 Poster: Hierarchical Long-term Video Prediction without Supervision »
Nevan Wichers · Ruben Villegas · Dumitru Erhan · Honglak Lee -
2018 Oral: Hierarchical Long-term Video Prediction without Supervision »
Nevan Wichers · Ruben Villegas · Dumitru Erhan · Honglak Lee -
2017 Poster: Zero-Shot Task Generalization with Multi-Task Deep Reinforcement Learning »
Junhyuk Oh · Satinder Singh · Honglak Lee · Pushmeet Kohli -
2017 Talk: Zero-Shot Task Generalization with Multi-Task Deep Reinforcement Learning »
Junhyuk Oh · Satinder Singh · Honglak Lee · Pushmeet Kohli -
2017 Poster: Learning to Generate Long-term Future via Hierarchical Prediction »
Ruben Villegas · Jimei Yang · Yuliang Zou · Sungryull Sohn · Xunyu Lin · Honglak Lee -
2017 Talk: Learning to Generate Long-term Future via Hierarchical Prediction »
Ruben Villegas · Jimei Yang · Yuliang Zou · Sungryull Sohn · Xunyu Lin · Honglak Lee