Timezone: »

 
Direct Preference Optimization: Your Language Model is Secretly a Reward Model
Rafael Rafailov · Archit Sharma · Eric Mitchell · Stefano Ermon · Christopher Manning · Chelsea Finn
Event URL: https://openreview.net/forum?id=53HUHMvQLQ »

While large-scale unsupervised language models (LMs) learn broad world knowledge and some reasoning skills, achieving precise control of their behavior is difficult due to the completely unsupervised nature of their training. Existing methods for gaining such steerability collect human labels of the relative quality of model generations and fine-tune the unsupervised LM to align with these preferences, often with reinforcement learning from human feedback (RLHF). However, RLHF is a complex and often unstable procedure, first fitting a reward model that reflects the human preferences, and then fine-tuning the large unsupervised LM using reinforcement learning to maximize this estimated reward without drifting too far from the original model. In this paper, we leverage a mapping between reward functions and optimal policies to show that this constrained reward maximization problem can be optimized exactly with a single stage of policy training, essentially solving a classification problem on the human preference data. The resulting algorithm, which we call Direct Preference Optimization (DPO), is stable, performant and computationally lightweight, eliminating the need for fitting a reward model, sampling from the LM during fine-tuning, or performing significant hyperparameter tuning. Our experiments show that DPO can effectively fine-tune LMs with human preferences as well or better than existing algorithms. Notably, fine-tuning with DPO matches or exceeds RLHF's ability to control sentiment of generations and improve response quality in summarization, while being substantially simpler to implement and train.

Author Information

Rafael Rafailov (Stanford University)
Archit Sharma (Stanford University)
Eric Mitchell (Stanford)
Stefano Ermon (Stanford University)
Christopher Manning (Stanford University)
Chelsea Finn (Stanford)

Chelsea Finn is an Assistant Professor in Computer Science and Electrical Engineering at Stanford University. Finn's research interests lie in the capability of robots and other agents to develop broadly intelligent behavior through learning and interaction. To this end, her work has included deep learning algorithms for concurrently learning visual perception and control in robotic manipulation skills, inverse reinforcement methods for learning reward functions underlying behavior, and meta-learning algorithms that can enable fast, few-shot adaptation in both visual perception and deep reinforcement learning. Finn received her Bachelor's degree in Electrical Engineering and Computer Science at MIT and her PhD in Computer Science at UC Berkeley. Her research has been recognized through the ACM doctoral dissertation award, the Microsoft Research Faculty Fellowship, the C.V. Ramamoorthy Distinguished Research Award, and the MIT Technology Review 35 under 35 Award, and her work has been covered by various media outlets, including the New York Times, Wired, and Bloomberg. Throughout her career, she has sought to increase the representation of underrepresented minorities within CS and AI by developing an AI outreach camp at Berkeley for underprivileged high school students, a mentoring program for underrepresented undergraduates across four universities, and leading efforts within the WiML and Berkeley WiCSE communities of women researchers.

More from the Same Authors