Timezone: »
Invisible watermarks safeguard images' copyrights by embedding hidden messages detectable by owners. It also prevents people from misusing images, especially those generated by AI models. Malicious adversaries can violate these rights by removing the watermarks. In order to remove watermarks without damaging the visual quality, the adversary needs to erase them while retaining the essential information in the image. This is analogous to the encoding and decoding process of generative autoencoders, especially variational autoencoders (VAEs) and diffusion models. We propose a framework using generative autoencoders to remove invisible watermarks and test it using VAEs and diffusions. Our results reveal that, even without specific training, off-the-shelf Stable Diffusion effectively removes most watermarks, surpassing all current attackers. The result underscores the vulnerabilities in existing watermarking schemes and calls for more robust methods for copyright protection.
Author Information
Xuandong Zhao (UCSB)
Kexun Zhang (University of California, Santa Barbara)
Yu-Xiang Wang (UC Santa Barbara / Amazon)
Lei Li (University of California Santa Barbara)
More from the Same Authors
-
2022 : Optimal Dynamic Regret in LQR Control »
Dheeraj Baby · Yu-Xiang Wang -
2023 : A Privacy-Friendly Approach to Data Valuation »
Jiachen Wang · Yuqing Zhu · Yu-Xiang Wang · Ruoxi Jia · Prateek Mittal -
2023 : Generating Global Factual and Counterfactual Explainer for Molecule under Domain Constraints »
Danqing Wang · Antonis Antoniades · Ambuj Singh · Lei Li -
2023 : Why Quantization Improves Generalization: NTK of Binary Weight Neural Network »
Kaiqi Zhang · Ming Yin · Yu-Xiang Wang -
2023 : Provable Robust Watermarking for AI-Generated Text »
Xuandong Zhao · Prabhanjan Ananth · Lei Li · Yu-Xiang Wang -
2023 Poster: Offline Reinforcement Learning with Closed-Form Policy Improvement Operators »
Jiachen Li · Edwin Zhang · Ming Yin · Jerry Bai · Yu-Xiang Wang · William Wang -
2023 Poster: Protecting Language Generation Models via Invisible Watermarking »
Xuandong Zhao · Yu-Xiang Wang · Lei Li -
2023 Poster: Differentially Private Optimization on Large Model at Small Cost »
Zhiqi Bu · Yu-Xiang Wang · Sheng Zha · George Karypis -
2023 Poster: Importance Weighted Expectation-Maximization for Protein Sequence Design »
Zhenqiao Song · Lei Li -
2023 Poster: Non-stationary Reinforcement Learning under General Function Approximation »
Songtao Feng · Ming Yin · Ruiquan Huang · Yu-Xiang Wang · Jing Yang · Yingbin LIANG -
2023 Poster: Global Optimization with Parametric Function Approximation »
Chong Liu · Yu-Xiang Wang -
2023 Poster: ReDi: Efficient Learning-Free Diffusion Inference via Trajectory Retrieval »
Kexun Zhang · Xianjun Yang · William Wang · Lei Li -
2022 Poster: Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost »
Dan Qiao · Ming Yin · Ming Min · Yu-Xiang Wang -
2022 Spotlight: Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost »
Dan Qiao · Ming Yin · Ming Min · Yu-Xiang Wang -
2022 Poster: On the Learning of Non-Autoregressive Transformers »
Fei Huang · Tianhua Tao · Hao Zhou · Lei Li · Minlie Huang -
2022 Spotlight: On the Learning of Non-Autoregressive Transformers »
Fei Huang · Tianhua Tao · Hao Zhou · Lei Li · Minlie Huang