Timezone: »
Deep learning models are often used with some downstream task. Models solely trained to achieve accurate predictions may struggle to perform well on thedesired downstream tasks. We propose using the task'sloss to learn a metric which parameterizes a loss to train the model.This approach does not alter the optimal prediction modelitself, but rather changes the model learning to emphasizethe information important for the downstream task.This enables us to achieve the best of both worlds:a prediction model trained in the original prediction space whilealso being valuable for the desired downstream task.We validate our approach through experimentsconducted in two main settings: 1) decision-focused model learningscenarios involving portfolio optimization and budget allocation, and2) reinforcement learning in noisy environments with distractingstates.
Author Information
Dishank Bansal (Meta AI)

AI Resident at Meta working on reinforcement learning and embodied AI.
Ricky T. Q. Chen (Meta AI)
Mustafa Mukadam (Meta AI / FAIR)
Brandon Amos (Meta)
More from the Same Authors
-
2021 : Neural Fixed-Point Acceleration for Convex Optimization »
Shobha Venkataraman · Brandon Amos -
2023 : Neural Optimal Transport with Lagrangian Costs »
Aram-Alexandre Pooladian · Carles Domingo i Enrich · Ricky T. Q. Chen · Brandon Amos -
2023 : On Convergence of Approximate Schr\"{o}dinger Bridge with Bounded Cost »
Wei Deng · Yu Chen · Tianjiao N Yang · Hengrong Du · Qi Feng · Ricky T. Q. Chen -
2023 : Koopman Constrained Policy Optimization: A Koopman operator theoretic method for differentiable optimal control in robotics »
Matthew Retchin · Brandon Amos · Steven Brunton · Shuran Song -
2023 : Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information »
Arman Zharmagambetov · Brandon Amos · Aaron Ferber · Taoan Huang · Bistra Dilkina · Yuandong Tian -
2023 : Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information »
Arman Zharmagambetov · Brandon Amos · Aaron Ferber · Taoan Huang · Bistra Dilkina · Yuandong Tian -
2023 : On optimal control and machine learning »
Brandon Amos -
2023 Poster: Meta Optimal Transport »
Brandon Amos · Giulia Luise · samuel cohen · Ievgen Redko -
2023 Poster: Multisample Flow Matching: Straightening Flows with Minibatch Couplings »
Aram-Alexandre Pooladian · Heli Ben-Hamu · Carles Domingo i Enrich · Brandon Amos · Yaron Lipman · Ricky T. Q. Chen -
2023 Poster: On Kinetic Optimal Probability Paths for Generative Models »
Neta Shaul · Ricky T. Q. Chen · Maximilian Nickel · Matthew Le · Yaron Lipman -
2023 Poster: Semi-Supervised Offline Reinforcement Learning with Action-Free Trajectories »
Qinqing Zheng · Mikael Henaff · Brandon Amos · Aditya Grover -
2022 : Differentiable optimization for control and reinforcement learning »
Brandon Amos -
2022 Poster: Matching Normalizing Flows and Probability Paths on Manifolds »
Heli Ben-Hamu · samuel cohen · Joey Bose · Brandon Amos · Maximilian Nickel · Aditya Grover · Ricky T. Q. Chen · Yaron Lipman -
2022 Spotlight: Matching Normalizing Flows and Probability Paths on Manifolds »
Heli Ben-Hamu · samuel cohen · Joey Bose · Brandon Amos · Maximilian Nickel · Aditya Grover · Ricky T. Q. Chen · Yaron Lipman -
2021 Poster: CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints »
Anselm Paulus · Michal Rolinek · Vit Musil · Brandon Amos · Georg Martius -
2021 Spotlight: CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints »
Anselm Paulus · Michal Rolinek · Vit Musil · Brandon Amos · Georg Martius -
2021 Poster: Riemannian Convex Potential Maps »
samuel cohen · Brandon Amos · Yaron Lipman -
2021 Spotlight: Riemannian Convex Potential Maps »
samuel cohen · Brandon Amos · Yaron Lipman -
2020 Poster: The Differentiable Cross-Entropy Method »
Brandon Amos · Denis Yarats