Timezone: »
Koopman Constrained Policy Optimization: A Koopman operator theoretic method for differentiable optimal control in robotics
Matthew Retchin · Brandon Amos · Steven Brunton · Shuran Song
Event URL: https://openreview.net/forum?id=3W7vPqWCeM »
We introduce Koopman Constrained Policy Optimization (KCPO), combining implicitly differentiable model predictive control with a deep Koopman autoencoder for robot learning in unknown and nonlinear dynamical systems. KCPO is a new policy optimization algorithm that trains neural policies end-to-end with hard box constraints on controls. Guaranteed satisfaction of hard constraints helps ensure the performance and safety of robots. We perform imitation learning with KCPO to recover expert policies on the Simple Pendulum, Cartpole Swing-Up, Reacher, and Differential Drive environments, outperforming baseline methods in generalizing to out-of-distribution constraints in most environments after training.
Author Information
Matthew Retchin (Columbia Artificial Intelligence and Robotics Lab)
Brandon Amos (Meta)
Steven Brunton (Princeton University)
Shuran Song (Columbia University)
More from the Same Authors
-
2021 : Neural Fixed-Point Acceleration for Convex Optimization »
Shobha Venkataraman · Brandon Amos -
2023 : Neural Optimal Transport with Lagrangian Costs »
Aram-Alexandre Pooladian · Carles Domingo i Enrich · Ricky T. Q. Chen · Brandon Amos -
2023 : TaskMet: Task-Driven Metric Learning for Model Learning »
Dishank Bansal · Ricky T. Q. Chen · Mustafa Mukadam · Brandon Amos -
2023 : Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information »
Arman Zharmagambetov · Brandon Amos · Aaron Ferber · Taoan Huang · Bistra Dilkina · Yuandong Tian -
2023 : Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information »
Arman Zharmagambetov · Brandon Amos · Aaron Ferber · Taoan Huang · Bistra Dilkina · Yuandong Tian -
2023 : On optimal control and machine learning »
Brandon Amos -
2023 Poster: Meta Optimal Transport »
Brandon Amos · Giulia Luise · samuel cohen · Ievgen Redko -
2023 Poster: Multisample Flow Matching: Straightening Flows with Minibatch Couplings »
Aram-Alexandre Pooladian · Heli Ben-Hamu · Carles Domingo i Enrich · Brandon Amos · Yaron Lipman · Ricky T. Q. Chen -
2023 Poster: Semi-Supervised Offline Reinforcement Learning with Action-Free Trajectories »
Qinqing Zheng · Mikael Henaff · Brandon Amos · Aditya Grover -
2022 : Differentiable optimization for control and reinforcement learning »
Brandon Amos -
2022 Poster: Matching Normalizing Flows and Probability Paths on Manifolds »
Heli Ben-Hamu · samuel cohen · Joey Bose · Brandon Amos · Maximilian Nickel · Aditya Grover · Ricky T. Q. Chen · Yaron Lipman -
2022 Spotlight: Matching Normalizing Flows and Probability Paths on Manifolds »
Heli Ben-Hamu · samuel cohen · Joey Bose · Brandon Amos · Maximilian Nickel · Aditya Grover · Ricky T. Q. Chen · Yaron Lipman -
2021 Poster: CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints »
Anselm Paulus · Michal Rolinek · Vit Musil · Brandon Amos · Georg Martius -
2021 Spotlight: CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints »
Anselm Paulus · Michal Rolinek · Vit Musil · Brandon Amos · Georg Martius -
2021 Poster: Riemannian Convex Potential Maps »
samuel cohen · Brandon Amos · Yaron Lipman -
2021 Spotlight: Riemannian Convex Potential Maps »
samuel cohen · Brandon Amos · Yaron Lipman -
2020 Poster: The Differentiable Cross-Entropy Method »
Brandon Amos · Denis Yarats