Timezone: »
Computations in computer graphics, robotics, and probabilistic inference often require differentiating integrals with discontinuous integrands. Popular differentiable programming languages do not support the differentiation of these integrals. To address this problem, we extend distribution theory to provide semantic definitions for a broad class of programs in a programming language, Potto. Potto can differentiate parametric discontinuities under integration, and it also supports first-order functions and compositional evaluation. We formalize the meaning of programs using denotational semantics and the evaluation of programs using operational semantics. We prove correctness theorems about the semantics and prove that the operational semantics are compositional, enabling separate compilation of programs and overcoming compile-time bottlenecks. Using Potto, we implement a prototype differentiable renderer with separately compiled shaders.
Author Information
Jesse Michel (Computer Science and Artificial Intelligence Laboratory, Electrical Engineering & Computer Science)
Kevin Mu
Xuanda Yang (Zhejiang University)
Sai Praveen Bangaru (Massachusetts Institute of Technology)
Elias Rojas Collins (Massachusetts Institute of Technology)
Gilbert Bernstein
Jonathan Ragan-Kelley (Massachusetts Institute of Technology)
Michael Carbin (MIT)
Tzu-Mao Li (University of California, San Diego)
More from the Same Authors
-
2021 : Studying the Consistency and Composability of Lottery Ticket Pruning Masks »
Rajiv Movva · Michael Carbin · Jonathan Frankle -
2021 : On the Generalization Improvement from Neural Network Pruning »
Tian Jin · Gintare Karolina Dziugaite · Michael Carbin -
2023 : Differentiating Metropolis-Hastings to Optimize Intractable Densities »
Gaurav Arya · Ruben Seyer · Frank Schäfer · Kartik Chandra · Alexander Lew · Mathieu Huot · Vikash Mansinghka · Jonathan Ragan-Kelley · Christopher Rackauckas · Moritz Schauer -
2023 : Can LLMs Generate Random Numbers? Evaluating LLM Sampling in Controlled Domains »
Aspen Hopkins · Alex Renda · Michael Carbin -
2023 : Inferring the Future by Imagining the Past »
Kartik Chandra · Tony Chen · Tzu-Mao Li · Jonathan Ragan-Kelley · Josh Tenenbaum -
2023 : Inferring the Future by Imagining the Past »
Kartik Chandra · Tony Chen · Tzu-Mao Li · Jonathan Ragan-Kelley · Josh Tenenbaum -
2021 : On the Generalization Improvement from Neural Network Pruning »
Tian Jin · Gintare Karolina Dziugaite · Michael Carbin -
2021 Poster: On the Predictability of Pruning Across Scales »
Jonathan Rosenfeld · Jonathan Frankle · Michael Carbin · Nir Shavit -
2021 Spotlight: On the Predictability of Pruning Across Scales »
Jonathan Rosenfeld · Jonathan Frankle · Michael Carbin · Nir Shavit -
2020 Poster: Linear Mode Connectivity and the Lottery Ticket Hypothesis »
Jonathan Frankle · Gintare Karolina Dziugaite · Daniel Roy · Michael Carbin -
2019 Poster: Ithemal: Accurate, Portable and Fast Basic Block Throughput Estimation using Deep Neural Networks »
Charith Mendis · Alex Renda · Dr.Saman Amarasinghe · Michael Carbin -
2019 Oral: Ithemal: Accurate, Portable and Fast Basic Block Throughput Estimation using Deep Neural Networks »
Charith Mendis · Alex Renda · Dr.Saman Amarasinghe · Michael Carbin