Timezone: »

 
CAAFE: Combining Large Language Models with Tabular Predictors for Semi-Automated Data Science
Noah Hollmann · Samuel Gabriel Müller · Frank Hutter
Event URL: https://openreview.net/forum?id=59TY0RW6Po »

As the field of automated machine learning (AutoML) advances, it becomes increasingly important to incorporate domain knowledge into these systems. Our approach combines the advantages of classical ML classifiers (robustness, predictability and a level of interpretability) and LLMs (domain-knowledge and creativity). We introduce Context-Aware Automated Feature Engineering (CAAFE), a feature engineering method for tabular datasets that utilizes an LLM to iteratively generate additional semantically meaningful features for tabular datasets based on the description of the dataset. The method produces both Python code for creating new features and explanations for the utility of the generated features. Despite being methodologically simple, CAAFE improves performance on 11 out of 14 datasets - boosting mean ROC AUC performance from 0.798 to 0.822 across all dataset - similar to the improvement achieved by using a random forest instead of logistic regression on our datasets. Furthermore, CAAFE is interpretable by providing a textual explanation for each generated feature. CAAFE paves the way for more extensive semi-automation in data science tasks and emphasizes the significance of context-aware solutions that can extend the scope of AutoML systems to semantic AutoML. We release our code, a simple demo and a python package.

Author Information

Noah Hollmann (Albert-Ludwigs-Universität Freiburg)
Samuel Gabriel Müller (Universität Freiburg)
Frank Hutter (University of Freiburg and Bosch Center for Artificial Intelligence)
Frank Hutter

Frank Hutter is a Full Professor for Machine Learning at the Computer Science Department of the University of Freiburg (Germany), where he has been a faculty member since 2013. Before that, he was at the University of British Columbia (UBC) for eight years, for his PhD and postdoc. Frank's main research interests lie in machine learning, artificial intelligence and automated algorithm design. For his 2009 PhD thesis on algorithm configuration, he received the CAIAC doctoral dissertation award for the best thesis in AI in Canada that year, and with his coauthors, he received several best paper awards and prizes in international competitions on automated machine learning, SAT solving, and AI planning. Since 2016 he holds an ERC Starting Grant for a project on automating deep learning based on Bayesian optimization, Bayesian neural networks, and deep reinforcement learning.

More from the Same Authors