Timezone: »
H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models
Zhenyu Zhang · Ying Sheng · Tianyi Zhou · Tianlong Chen · Lianmin Zheng · Ruisi Cai · Zhao Song · Yuandong Tian · Christopher Re · Clark Barrett · Zhangyang “Atlas” Wang · Beidi Chen
Event URL: https://openreview.net/forum?id=ctPizehA9D »
Large Language Models (LLMs), despite their recent impressive accomplishments, are notably cost-prohibitive to deploy, particularly for applications involving long-content generation, such as dialogue systems and story writing. Often, a large amount of transient state information, referred to as the $\mathsf{KV}$ $\mathsf{cache}$, is stored in GPU memory in addition to model parameters, scaling linearly with the sequence length and batch size. In this paper, we introduce a novel approach for implementing the $\mathsf{KV}$ $\mathsf{cache}$ which significantly reduces its memory footprint. Our approach is based on the noteworthy observation that a small portion of tokens contributes most of the value when computing attention scores. We call these tokens Heavy Hitters ($\mathsf{H_2}$). Through a comprehensive investigation, we find that ($i$) the emergence of $\mathsf{H_2}$ is natural and strongly correlates with the frequent co-occurrence of tokens in the text, and ($ii$) removing them results in significant performance degradation. Based on these insights, we propose Heavy Hitter Oracle ($\mathsf{H_2O}$), a $\mathsf{KV}$ $\mathsf{cache}$ eviction policy that dynamically retains a balance of recent and $\mathsf{H_2}$ tokens. We formulate the $\mathsf{KV}$ $\mathsf{cache}$ eviction as a dynamic submodular problem and prove (under mild assumptions) a theoretical guarantee for our novel eviction algorithm which could help guide future work. We validate the accuracy of our algorithm with OPT, LLaMA, and GPT-NeoX across a wide range of tasks. Our implementation of $\mathsf{H_2O}$ with $20$\% heavy hitters improves the throughput over three leading inference systems DeepSpeed Zero-Inference, Hugging Face Accelerate, and FlexGen by up to $29\times$, $29\times$, and $3\times$ on OPT-6.7B and OPT-30B. With the same batch size, $\mathsf{H_2O}$ can reduce the latency by up to $1.9\times$.
Large Language Models (LLMs), despite their recent impressive accomplishments, are notably cost-prohibitive to deploy, particularly for applications involving long-content generation, such as dialogue systems and story writing. Often, a large amount of transient state information, referred to as the $\mathsf{KV}$ $\mathsf{cache}$, is stored in GPU memory in addition to model parameters, scaling linearly with the sequence length and batch size. In this paper, we introduce a novel approach for implementing the $\mathsf{KV}$ $\mathsf{cache}$ which significantly reduces its memory footprint. Our approach is based on the noteworthy observation that a small portion of tokens contributes most of the value when computing attention scores. We call these tokens Heavy Hitters ($\mathsf{H_2}$). Through a comprehensive investigation, we find that ($i$) the emergence of $\mathsf{H_2}$ is natural and strongly correlates with the frequent co-occurrence of tokens in the text, and ($ii$) removing them results in significant performance degradation. Based on these insights, we propose Heavy Hitter Oracle ($\mathsf{H_2O}$), a $\mathsf{KV}$ $\mathsf{cache}$ eviction policy that dynamically retains a balance of recent and $\mathsf{H_2}$ tokens. We formulate the $\mathsf{KV}$ $\mathsf{cache}$ eviction as a dynamic submodular problem and prove (under mild assumptions) a theoretical guarantee for our novel eviction algorithm which could help guide future work. We validate the accuracy of our algorithm with OPT, LLaMA, and GPT-NeoX across a wide range of tasks. Our implementation of $\mathsf{H_2O}$ with $20$\% heavy hitters improves the throughput over three leading inference systems DeepSpeed Zero-Inference, Hugging Face Accelerate, and FlexGen by up to $29\times$, $29\times$, and $3\times$ on OPT-6.7B and OPT-30B. With the same batch size, $\mathsf{H_2O}$ can reduce the latency by up to $1.9\times$.
Author Information
Zhenyu Zhang (University of Texas at Austin)
Ying Sheng (Stanford University)
Ying Sheng is a PhD student from Stanford University advised by Clark Barrett. Her recent research topics include large language models and program verification. She has been looking into model serving and inference in different aspects. Among those, she created FlexGen, an initial effort for high-throughput inference on limited resources. Her recent focus is to help build the MLSYS org, which aims to make large models accessible to everyone. On the other hand, she is one of the developers of cvc5, one of the mainstream SMT solvers. Her works in SMT have won the best paper and best tool paper awards at IJCAR and TACAS.
Tianyi Zhou
Tianlong Chen (PostDoc - MIT/Harvard; Incoming Assistant Professor - UNC Chapel Hill)
Lianmin Zheng (UC Berkeley)
Ruisi Cai (The University of Texas at Austin)
Zhao Song (Adobe Research)
Yuandong Tian (Facebook AI Research)
Christopher Re (Stanford University)
Clark Barrett (Stanford University)
Zhangyang “Atlas” Wang (University of Texas at Austin)
Beidi Chen (CMU / FAIR)
More from the Same Authors
-
2021 : A Standardized Data Collection Toolkit for Model Benchmarking »
Avanika Narayan · Piero Molino · Karan Goel · Christopher Re -
2022 : BARACK: Partially Supervised Group Robustness With Guarantees »
Nimit Sohoni · Maziar Sanjabi · Nicolas Ballas · Aditya Grover · Shaoliang Nie · Hamed Firooz · Christopher Re -
2022 : Contrastive Adapters for Foundation Model Group Robustness »
Michael Zhang · Christopher Re -
2022 : The Importance of Background Information for Out of Distribution Generalization »
Jupinder Parmar · Khaled Saab · Brian Pogatchnik · Daniel Rubin · Christopher Ré -
2022 : Toward Certified Robustness Against Real-World Distribution Shifts »
Haoze Wu · TERUHIRO TAGOMORI · Alex Robey · Fengjun Yang · Nikolai Matni · George J. Pappas · Hamed Hassani · Corina Pasareanu · Clark Barrett -
2022 : Transform Once: Efficient Operator Learning in Frequency Domain »
Michael Poli · Stefano Massaroli · Federico Berto · Jinkyoo Park · Tri Dao · Christopher Re · Stefano Ermon -
2023 : Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer »
Yuandong Tian · Yiping Wang · Beidi Chen · Simon Du -
2023 : Skill-it! A Data-Driven Skills Framework for Understanding and Training Language Models »
Mayee Chen · Nicholas Roberts · Kush Bhatia · Jue Wang · Ce Zhang · Frederic Sala · Christopher Ré -
2023 : Prospectors: Leveraging Short Contexts to Mine Salient Objects in High-dimensional Imagery »
Gautam Machiraju · Arjun Desai · James Zou · Christopher Re · Parag Mallick -
2023 : Accelerating LLM Inference with Staged Speculative Decoding »
Benjamin F Spector · Christopher Re -
2023 : Towards Structured Sparsity in Transformers for Efficient Inference »
Harry Dong · Beidi Chen · Yuejie Chi -
2023 : Incremental Low-Rank Learning »
Jiawei Zhao · Yifei Zhang · Beidi Chen · Florian Schaefer · Anima Anandkumar -
2023 : Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information »
Arman Zharmagambetov · Brandon Amos · Aaron Ferber · Taoan Huang · Bistra Dilkina · Yuandong Tian -
2023 : SurCo: Learning Linear SURrogates for COmbinatorial Nonlinear Optimization Problems »
Aaron Ferber · Taoan Huang · Daochen Zha · Martin Schubert · Benoit Steiner · Bistra Dilkina · Yuandong Tian -
2023 : Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information »
Arman Zharmagambetov · Brandon Amos · Aaron Ferber · Taoan Huang · Bistra Dilkina · Yuandong Tian -
2023 : Searching Large Neighborhoods for Integer Linear Programs with Contrastive Learning »
Taoan Huang · Aaron Ferber · Yuandong Tian · Bistra Dilkina · Benoit Steiner -
2023 Workshop: ES-FoMo: Efficient Systems for Foundation Models »
Julien Launay · Daniel Y Fu · Tri Dao · Daniel Hesslow · Beidi Chen · Azalia Mirhoseini · Percy Liang -
2023 : Contributed talks 2 »
Simon Du · Wei Huang · Yuandong Tian -
2023 : Atlas Wang »
Zhangyang “Atlas” Wang -
2023 Oral: Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time »
Zichang Liu · Jue Wang · Tri Dao · Tianyi Zhou · Binhang Yuan · Zhao Song · Anshumali Shrivastava · Ce Zhang · Yuandong Tian · Christopher Re · Beidi Chen -
2023 Oral: Hyena Hierarchy: Towards Larger Convolutional Language Models »
Michael Poli · Stefano Massaroli · Eric Nguyen · Daniel Y Fu · Tri Dao · Stephen Baccus · Yoshua Bengio · Stefano Ermon · Christopher Re -
2023 Poster: SurCo: Learning Linear SURrogates for COmbinatorial Nonlinear Optimization Problems »
Aaron Ferber · Taoan Huang · Daochen Zha · Martin Schubert · Benoit Steiner · Bistra Dilkina · Yuandong Tian -
2023 Poster: Federated Adversarial Learning: A Framework with Convergence Analysis »
Xiaoxiao Li · Zhao Song · Jiaming Yang -
2023 Poster: Learning to Optimize Differentiable Games »
Xuxi Chen · Nelson Vadori · Tianlong Chen · Zhangyang “Atlas” Wang -
2023 Poster: Robust Weight Signatures: Gaining Robustness as Easy as Patching Weights? »
Ruisi Cai · Zhenyu Zhang · Zhangyang “Atlas” Wang -
2023 Poster: Simple Hardware-Efficient Long Convolutions for Sequence Modeling »
Daniel Y Fu · Elliot L Epstein · Eric Nguyen · Armin Thomas · Michael Zhang · Tri Dao · Atri Rudra · Christopher Re -
2023 Poster: Data Efficient Neural Scaling Law via Model Reusing »
Peihao Wang · Rameswar Panda · Zhangyang “Atlas” Wang -
2023 Poster: Sketching for First Order Method: Efficient Algorithm for Low-Bandwidth Channel and Vulnerability »
Zhao Song · Yitan Wang · Zheng Yu · Lichen Zhang -
2023 Poster: FlexGen: High-Throughput Generative Inference of Large Language Models with a Single GPU »
Ying Sheng · Lianmin Zheng · Binhang Yuan · Zhuohan Li · Max Ryabinin · Beidi Chen · Percy Liang · Christopher Re · Ion Stoica · Ce Zhang -
2023 Oral: FlexGen: High-Throughput Generative Inference of Large Language Models with a Single GPU »
Ying Sheng · Lianmin Zheng · Binhang Yuan · Zhuohan Li · Max Ryabinin · Beidi Chen · Percy Liang · Christopher Re · Ion Stoica · Ce Zhang -
2023 Oral: Instant Soup: Cheap Pruning Ensembles in A Single Pass Can Draw Lottery Tickets from Large Models »
Ajay Jaiswal · Shiwei Liu · Tianlong Chen · Ding · Zhangyang “Atlas” Wang -
2023 Poster: Hyena Hierarchy: Towards Larger Convolutional Language Models »
Michael Poli · Stefano Massaroli · Eric Nguyen · Daniel Y Fu · Tri Dao · Stephen Baccus · Yoshua Bengio · Stefano Ermon · Christopher Re -
2023 Poster: CocktailSGD: Fine-tuning Foundation Models over 500Mbps Networks »
Jue Wang · Yucheng Lu · Binhang Yuan · Beidi Chen · Percy Liang · Chris De Sa · Christopher Re · Ce Zhang -
2023 Poster: Are Large Kernels Better Teachers than Transformers for ConvNets? »
Tianjin Huang · Lu Yin · Zhenyu Zhang · Li Shen · Meng Fang · Mykola Pechenizkiy · Zhangyang “Atlas” Wang · Shiwei Liu -
2023 Poster: Outline, Then Details: Syntactically Guided Coarse-To-Fine Code Generation »
Wenqing Zheng · S P Sharan · Ajay Jaiswal · Kevin Wang · Yihan Xi · Dejia Xu · Zhangyang “Atlas” Wang -
2023 Poster: A Nearly-Optimal Bound for Fast Regression with $\ell_\infty$ Guarantee »
Zhao Song · Mingquan Ye · Junze Yin · Lichen Zhang -
2023 Poster: Searching Large Neighborhoods for Integer Linear Programs with Contrastive Learning »
Taoan Huang · Aaron Ferber · Yuandong Tian · Bistra Dilkina · Benoit Steiner -
2023 Poster: Towards Constituting Mathematical Structures for Learning to Optimize »
Jialin Liu · Xiaohan Chen · Zhangyang “Atlas” Wang · Wotao Yin · HanQin Cai -
2023 Poster: Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time »
Zichang Liu · Jue Wang · Tri Dao · Tianyi Zhou · Binhang Yuan · Zhao Song · Anshumali Shrivastava · Ce Zhang · Yuandong Tian · Christopher Re · Beidi Chen -
2023 Poster: Graph Ladling: Shockingly Simple Parallel GNN Training without Intermediate Communication »
Ajay Jaiswal · Shiwei Liu · Tianlong Chen · Ding · Zhangyang “Atlas” Wang -
2023 Poster: Sketching Meets Differential Privacy: Fast Algorithm for Dynamic Kronecker Projection Maintenance »
Zhao Song · Xin Yang · Yuanyuan Yang · Lichen Zhang -
2023 Poster: Lowering the Pre-training Tax for Gradient-based Subset Training: A Lightweight Distributed Pre-Training Toolkit »
Yeonju Ro · Zhangyang “Atlas” Wang · Vijay Chidambaram · Aditya Akella -
2023 Poster: Learning Compiler Pass Orders using Coreset and Normalized Value Prediction »
Youwei Liang · Kevin Stone · Ali Shameli · Chris Cummins · Mostafa Elhoushi · Jiadong Guo · Benoit Steiner · Xiaomeng Yang · Pengtao Xie · Hugh Leather · Yuandong Tian -
2023 Poster: Instant Soup: Cheap Pruning Ensembles in A Single Pass Can Draw Lottery Tickets from Large Models »
Ajay Jaiswal · Shiwei Liu · Tianlong Chen · Ding · Zhangyang “Atlas” Wang -
2022 : Invited talk #8 Atlas Wang. Title: “Free Knowledge” in Chest X-rays: Contrastive Learning of Images and Their Radiomics »
Zhangyang “Atlas” Wang -
2022 : FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness »
Tri Dao · Daniel Y Fu · Stefano Ermon · Atri Rudra · Christopher Re -
2022 : APP: Anytime Progressive Pruning »
Diganta Misra · Bharat Runwal · Tianlong Chen · Zhangyang “Atlas” Wang · Irina Rish -
2022 Workshop: Workshop on Formal Verification of Machine Learning »
Huan Zhang · Leslie Rice · Kaidi Xu · aditi raghunathan · Wan-Yi Lin · Cho-Jui Hsieh · Clark Barrett · Martin Vechev · Zico Kolter -
2022 Poster: Data-Efficient Double-Win Lottery Tickets from Robust Pre-training »
Tianlong Chen · Zhenyu Zhang · Sijia Liu · Yang Zhang · Shiyu Chang · Zhangyang “Atlas” Wang -
2022 Poster: GACT: Activation Compressed Training for Generic Network Architectures »
Xiaoxuan Liu · Lianmin Zheng · Dequan Wang · Yukuo Cen · Weize Chen · Xu Han · Jianfei Chen · Zhiyuan Liu · Jie Tang · Joseph Gonzalez · Michael Mahoney · Alvin Cheung -
2022 Poster: Linearity Grafting: Relaxed Neuron Pruning Helps Certifiable Robustness »
Tianlong Chen · Huan Zhang · Zhenyu Zhang · Shiyu Chang · Sijia Liu · Pin-Yu Chen · Zhangyang “Atlas” Wang -
2022 Poster: It’s Raw! Audio Generation with State-Space Models »
Karan Goel · Albert Gu · Chris Donahue · Christopher Re -
2022 Spotlight: Data-Efficient Double-Win Lottery Tickets from Robust Pre-training »
Tianlong Chen · Zhenyu Zhang · Sijia Liu · Yang Zhang · Shiyu Chang · Zhangyang “Atlas” Wang -
2022 Oral: It’s Raw! Audio Generation with State-Space Models »
Karan Goel · Albert Gu · Chris Donahue · Christopher Re -
2022 Spotlight: GACT: Activation Compressed Training for Generic Network Architectures »
Xiaoxuan Liu · Lianmin Zheng · Dequan Wang · Yukuo Cen · Weize Chen · Xu Han · Jianfei Chen · Zhiyuan Liu · Jie Tang · Joseph Gonzalez · Michael Mahoney · Alvin Cheung -
2022 Spotlight: Linearity Grafting: Relaxed Neuron Pruning Helps Certifiable Robustness »
Tianlong Chen · Huan Zhang · Zhenyu Zhang · Shiyu Chang · Sijia Liu · Pin-Yu Chen · Zhangyang “Atlas” Wang -
2022 Poster: Universality of Winning Tickets: A Renormalization Group Perspective »
William T. Redman · Tianlong Chen · Zhangyang “Atlas” Wang · Akshunna S. Dogra -
2022 Poster: VariGrow: Variational Architecture Growing for Task-Agnostic Continual Learning based on Bayesian Novelty »
Randy Ardywibowo · Zepeng Huo · Zhangyang “Atlas” Wang · Bobak Mortazavi · Shuai Huang · Xiaoning Qian -
2022 Poster: Partial and Asymmetric Contrastive Learning for Out-of-Distribution Detection in Long-Tailed Recognition »
Haotao Wang · Aston Zhang · Yi Zhu · Shuai Zheng · Mu Li · Alex Smola · Zhangyang “Atlas” Wang -
2022 Poster: Training Your Sparse Neural Network Better with Any Mask »
Ajay Jaiswal · Haoyu Ma · Tianlong Chen · Ying Ding · Zhangyang “Atlas” Wang -
2022 Poster: Perfectly Balanced: Improving Transfer and Robustness of Supervised Contrastive Learning »
Mayee Chen · Daniel Y Fu · Avanika Narayan · Michael Zhang · Zhao Song · Kayvon Fatahalian · Christopher Re -
2022 Oral: Partial and Asymmetric Contrastive Learning for Out-of-Distribution Detection in Long-Tailed Recognition »
Haotao Wang · Aston Zhang · Yi Zhu · Shuai Zheng · Mu Li · Alex Smola · Zhangyang “Atlas” Wang -
2022 Spotlight: Universality of Winning Tickets: A Renormalization Group Perspective »
William T. Redman · Tianlong Chen · Zhangyang “Atlas” Wang · Akshunna S. Dogra -
2022 Spotlight: Training Your Sparse Neural Network Better with Any Mask »
Ajay Jaiswal · Haoyu Ma · Tianlong Chen · Ying Ding · Zhangyang “Atlas” Wang -
2022 Spotlight: Perfectly Balanced: Improving Transfer and Robustness of Supervised Contrastive Learning »
Mayee Chen · Daniel Y Fu · Avanika Narayan · Michael Zhang · Zhao Song · Kayvon Fatahalian · Christopher Re -
2022 Spotlight: VariGrow: Variational Architecture Growing for Task-Agnostic Continual Learning based on Bayesian Novelty »
Randy Ardywibowo · Zepeng Huo · Zhangyang “Atlas” Wang · Bobak Mortazavi · Shuai Huang · Xiaoning Qian -
2022 Poster: Coarsening the Granularity: Towards Structurally Sparse Lottery Tickets »
Tianlong Chen · Xuxi Chen · Xiaolong Ma · Yanzhi Wang · Zhangyang “Atlas” Wang -
2022 Poster: Removing Batch Normalization Boosts Adversarial Training »
Haotao Wang · Aston Zhang · Shuai Zheng · Xingjian Shi · Mu Li · Zhangyang “Atlas” Wang -
2022 Poster: Monarch: Expressive Structured Matrices for Efficient and Accurate Training »
Tri Dao · Beidi Chen · Nimit Sohoni · Arjun Desai · Michael Poli · Jessica Grogan · Alexander Liu · Aniruddh Rao · Atri Rudra · Christopher Re -
2022 Poster: Neural Implicit Dictionary Learning via Mixture-of-Expert Training »
Peihao Wang · Zhiwen Fan · Tianlong Chen · Zhangyang “Atlas” Wang -
2022 Poster: Correct-N-Contrast: a Contrastive Approach for Improving Robustness to Spurious Correlations »
Michael Zhang · Nimit Sohoni · Hongyang Zhang · Chelsea Finn · Christopher Re -
2022 Spotlight: Removing Batch Normalization Boosts Adversarial Training »
Haotao Wang · Aston Zhang · Shuai Zheng · Xingjian Shi · Mu Li · Zhangyang “Atlas” Wang -
2022 Oral: Correct-N-Contrast: a Contrastive Approach for Improving Robustness to Spurious Correlations »
Michael Zhang · Nimit Sohoni · Hongyang Zhang · Chelsea Finn · Christopher Re -
2022 Spotlight: Neural Implicit Dictionary Learning via Mixture-of-Expert Training »
Peihao Wang · Zhiwen Fan · Tianlong Chen · Zhangyang “Atlas” Wang -
2022 Oral: Monarch: Expressive Structured Matrices for Efficient and Accurate Training »
Tri Dao · Beidi Chen · Nimit Sohoni · Arjun Desai · Michael Poli · Jessica Grogan · Alexander Liu · Aniruddh Rao · Atri Rudra · Christopher Re -
2022 Spotlight: Coarsening the Granularity: Towards Structurally Sparse Lottery Tickets »
Tianlong Chen · Xuxi Chen · Xiaolong Ma · Yanzhi Wang · Zhangyang “Atlas” Wang -
2022 : Tools for Big Model, Key Takeaways, and Q&A »
Lianmin Zheng -
2022 : Intra-Operator Parallelism »
Lianmin Zheng -
2022 Tutorial: Welcome to the "Big Model" Era: Techniques and Systems to Train and Serve Bigger Models »
Hao Zhang · Lianmin Zheng · Zhuohan Li · Ion Stoica -
2021 Poster: Fast Sketching of Polynomial Kernels of Polynomial Degree »
Zhao Song · David Woodruff · Zheng Yu · Lichen Zhang -
2021 Poster: Sparse and Imperceptible Adversarial Attack via a Homotopy Algorithm »
Mingkang Zhu · Tianlong Chen · Zhangyang “Atlas” Wang -
2021 Poster: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections »
Ines Chami · Albert Gu · Dat P Nguyen · Christopher Re -
2021 Spotlight: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections »
Ines Chami · Albert Gu · Dat P Nguyen · Christopher Re -
2021 Spotlight: Fast Sketching of Polynomial Kernels of Polynomial Degree »
Zhao Song · David Woodruff · Zheng Yu · Lichen Zhang -
2021 Oral: Sparse and Imperceptible Adversarial Attack via a Homotopy Algorithm »
Mingkang Zhu · Tianlong Chen · Zhangyang “Atlas” Wang -
2021 Poster: Graph Contrastive Learning Automated »
Yuning You · Tianlong Chen · Yang Shen · Zhangyang “Atlas” Wang -
2021 Poster: Self-Damaging Contrastive Learning »
Ziyu Jiang · Tianlong Chen · Bobak Mortazavi · Zhangyang “Atlas” Wang -
2021 Oral: Graph Contrastive Learning Automated »
Yuning You · Tianlong Chen · Yang Shen · Zhangyang “Atlas” Wang -
2021 Spotlight: Self-Damaging Contrastive Learning »
Ziyu Jiang · Tianlong Chen · Bobak Mortazavi · Zhangyang “Atlas” Wang -
2021 Poster: Mandoline: Model Evaluation under Distribution Shift »
Mayee Chen · Karan Goel · Nimit Sohoni · Fait Poms · Kayvon Fatahalian · Christopher Re -
2021 Poster: FL-NTK: A Neural Tangent Kernel-based Framework for Federated Learning Analysis »
Baihe Huang · Xiaoxiao Li · Zhao Song · Xin Yang -
2021 Spotlight: Mandoline: Model Evaluation under Distribution Shift »
Mayee Chen · Karan Goel · Nimit Sohoni · Fait Poms · Kayvon Fatahalian · Christopher Re -
2021 Spotlight: FL-NTK: A Neural Tangent Kernel-based Framework for Federated Learning Analysis »
Baihe Huang · Xiaoxiao Li · Zhao Song · Xin Yang -
2021 Poster: Catformer: Designing Stable Transformers via Sensitivity Analysis »
Jared Quincy Davis · Albert Gu · Krzysztof Choromanski · Tri Dao · Christopher Re · Chelsea Finn · Percy Liang -
2021 Poster: ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training »
Jianfei Chen · Lianmin Zheng · Zhewei Yao · Dequan Wang · Ion Stoica · Michael Mahoney · Joseph E Gonzalez -
2021 Poster: A Tale of Two Efficient and Informative Negative Sampling Distributions »
Shabnam Daghaghi · Tharun Medini · Nicholas Meisburger · Beidi Chen · Mengnan Zhao · Anshumali Shrivastava -
2021 Poster: Oblivious Sketching-based Central Path Method for Linear Programming »
Zhao Song · Zheng Yu -
2021 Spotlight: Catformer: Designing Stable Transformers via Sensitivity Analysis »
Jared Quincy Davis · Albert Gu · Krzysztof Choromanski · Tri Dao · Christopher Re · Chelsea Finn · Percy Liang -
2021 Spotlight: Oblivious Sketching-based Central Path Method for Linear Programming »
Zhao Song · Zheng Yu -
2021 Oral: ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training »
Jianfei Chen · Lianmin Zheng · Zhewei Yao · Dequan Wang · Ion Stoica · Michael Mahoney · Joseph E Gonzalez -
2021 Oral: A Tale of Two Efficient and Informative Negative Sampling Distributions »
Shabnam Daghaghi · Tharun Medini · Nicholas Meisburger · Beidi Chen · Mengnan Zhao · Anshumali Shrivastava -
2021 Poster: A Unified Lottery Ticket Hypothesis for Graph Neural Networks »
Tianlong Chen · Yongduo Sui · Xuxi Chen · Aston Zhang · Zhangyang “Atlas” Wang -
2021 Poster: Efficient Lottery Ticket Finding: Less Data is More »
Zhenyu Zhang · Xuxi Chen · Tianlong Chen · Zhangyang “Atlas” Wang -
2021 Spotlight: Efficient Lottery Ticket Finding: Less Data is More »
Zhenyu Zhang · Xuxi Chen · Tianlong Chen · Zhangyang “Atlas” Wang -
2021 Spotlight: A Unified Lottery Ticket Hypothesis for Graph Neural Networks »
Tianlong Chen · Yongduo Sui · Xuxi Chen · Aston Zhang · Zhangyang “Atlas” Wang -
2020 Poster: Self-PU: Self Boosted and Calibrated Positive-Unlabeled Training »
Xuxi Chen · Wuyang Chen · Tianlong Chen · Ye Yuan · Chen Gong · Kewei Chen · Zhangyang “Atlas” Wang -
2020 Poster: When Does Self-Supervision Help Graph Convolutional Networks? »
Yuning You · Tianlong Chen · Zhangyang “Atlas” Wang · Yang Shen -
2020 Poster: Automated Synthetic-to-Real Generalization »
Wuyang Chen · Zhiding Yu · Zhangyang “Atlas” Wang · Anima Anandkumar -
2020 Poster: Eliminating the Invariance on the Loss Landscape of Linear Autoencoders »
Reza Oftadeh · Jiayi Shen · Zhangyang “Atlas” Wang · Dylan Shell -
2020 Poster: Fast and Three-rious: Speeding Up Weak Supervision with Triplet Methods »
Daniel Y Fu · Mayee Chen · Frederic Sala · Sarah Hooper · Kayvon Fatahalian · Christopher Re -
2020 Poster: Angular Visual Hardness »
Beidi Chen · Weiyang Liu · Zhiding Yu · Jan Kautz · Anshumali Shrivastava · Animesh Garg · Anima Anandkumar -
2020 Poster: NADS: Neural Architecture Distribution Search for Uncertainty Awareness »
Randy Ardywibowo · Shahin Boluki · Xinyu Gong · Zhangyang “Atlas” Wang · Xiaoning Qian -
2020 Poster: Meta-learning for Mixed Linear Regression »
Weihao Kong · Raghav Somani · Zhao Song · Sham Kakade · Sewoong Oh -
2020 Poster: On the Generalization Effects of Linear Transformations in Data Augmentation »
Sen Wu · Hongyang Zhang · Gregory Valiant · Christopher Re -
2020 Poster: AutoGAN-Distiller: Searching to Compress Generative Adversarial Networks »
Yonggan Fu · Wuyang Chen · Haotao Wang · Haoran Li · Yingyan Lin · Zhangyang “Atlas” Wang -
2019 Poster: Learning Fast Algorithms for Linear Transforms Using Butterfly Factorizations »
Tri Dao · Albert Gu · Matthew Eichhorn · Atri Rudra · Christopher Re -
2019 Poster: Learning Dependency Structures for Weak Supervision Models »
Paroma Varma · Frederic Sala · Ann He · Alexander J Ratner · Christopher Re -
2019 Oral: Learning Dependency Structures for Weak Supervision Models »
Paroma Varma · Frederic Sala · Ann He · Alexander J Ratner · Christopher Re -
2019 Oral: Learning Fast Algorithms for Linear Transforms Using Butterfly Factorizations »
Tri Dao · Albert Gu · Matthew Eichhorn · Atri Rudra · Christopher Re -
2019 Poster: A Kernel Theory of Modern Data Augmentation »
Tri Dao · Albert Gu · Alexander J Ratner · Virginia Smith · Christopher De Sa · Christopher Re -
2019 Oral: A Kernel Theory of Modern Data Augmentation »
Tri Dao · Albert Gu · Alexander J Ratner · Virginia Smith · Christopher De Sa · Christopher Re -
2018 Poster: Representation Tradeoffs for Hyperbolic Embeddings »
Frederic Sala · Christopher De Sa · Albert Gu · Christopher Re -
2018 Oral: Representation Tradeoffs for Hyperbolic Embeddings »
Frederic Sala · Christopher De Sa · Albert Gu · Christopher Re -
2017 Poster: Learning the Structure of Generative Models without Labeled Data »
Stephen Bach · Bryan He · Alexander J Ratner · Christopher Re -
2017 Talk: Learning the Structure of Generative Models without Labeled Data »
Stephen Bach · Bryan He · Alexander J Ratner · Christopher Re