Timezone: »
Energy-based models (EBMs) are versatile density estimation models that directly parameterize an unnormalized log density. Although very flexible, EBMs lack a specified normalization constant of the model, making the likelihood of the model computationally intractable. Several approximate samplers and variational inference techniques have been proposed to estimate the likelihood gradients for training. These techniques have shown promising results in generating samples, but little attention has been paid to the statistical accuracy of the estimated density, such as determining the relative importance of different classes in a dataset. In this work, we propose a new maximum likelihood training algorithm for EBMs that uses a different type of generative model, normalizing flows (NF), which have recently been proposed to facilitate sampling. Our method fits an NF to an EBM during training so that an NF-assisted sampling scheme provides an accurate gradient for the EBMs at all times, ultimately leading to a fast sampler for generating new data.
Author Information
Louis Grenioux (École Polytechnique)
Eric Moulines (Ecole Polytechnique)
Marylou Gabrié (NYU / Flatiron Institute)
More from the Same Authors
-
2021 : Efficient Bayesian Sampling Using Normalizing Flows to Assist Markov Chain Monte Carlo Methods »
Marylou Gabrié -
2021 : On the interplay between data structure and loss function: an analytical study of generalization for classification »
Stéphane d'Ascoli · Marylou Gabrié · Levent Sagun · Giulio Biroli -
2021 : Model-Free Approach to Evaluate Reinforcement Learning Algorithms »
Denis Belomestny · Ilya Levin · Eric Moulines · Alexey Naumov · Sergey Samsonov · Veronika Zorina -
2023 Poster: Conformal Prediction for Federated Uncertainty Quantification Under Label Shift »
Vincent Plassier · Mehdi Makni · Aleksandr Rubashevskii · Eric Moulines · Maxim Panov -
2023 Poster: Fast Rates for Maximum Entropy Exploration »
Daniil Tiapkin · Denis Belomestny · Daniele Calandriello · Eric Moulines · Remi Munos · Alexey Naumov · Pierre Perrault · Yunhao Tang · Michal Valko · Pierre Menard -
2023 Poster: On Sampling with Approximate Transport Maps »
Louis Grenioux · Alain Oliviero Durmus · Eric Moulines · Marylou Gabrié -
2023 Oral: Quantile Credit Assignment »
Thomas Mesnard · Wenqi Chen · Alaa Saade · Yunhao Tang · Mark Rowland · Theophane Weber · Clare Lyle · Audrunas Gruslys · Michal Valko · Will Dabney · Georg Ostrovski · Eric Moulines · Remi Munos -
2023 Poster: Quantile Credit Assignment »
Thomas Mesnard · Wenqi Chen · Alaa Saade · Yunhao Tang · Mark Rowland · Theophane Weber · Clare Lyle · Audrunas Gruslys · Michal Valko · Will Dabney · Georg Ostrovski · Eric Moulines · Remi Munos -
2023 Poster: State and parameter learning with PARIS particle Gibbs »
Gabriel Cardoso · Yazid Janati el idrissi · Sylvain Le Corff · Eric Moulines · Jimmy Olsson -
2022 Poster: From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses »
Daniil Tiapkin · Denis Belomestny · Eric Moulines · Alexey Naumov · Sergey Samsonov · Yunhao Tang · Michal Valko · Pierre Menard -
2022 Oral: From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses »
Daniil Tiapkin · Denis Belomestny · Eric Moulines · Alexey Naumov · Sergey Samsonov · Yunhao Tang · Michal Valko · Pierre Menard -
2022 Poster: Diffusion bridges vector quantized variational autoencoders »
Max Cohen · Guillaume QUISPE · Sylvain Le Corff · Charles Ollion · Eric Moulines -
2022 Spotlight: Diffusion bridges vector quantized variational autoencoders »
Max Cohen · Guillaume QUISPE · Sylvain Le Corff · Charles Ollion · Eric Moulines -
2021 Poster: Monte Carlo Variational Auto-Encoders »
Achille Thin · Nikita Kotelevskii · Arnaud Doucet · Alain Durmus · Eric Moulines · Maxim Panov -
2021 Spotlight: Monte Carlo Variational Auto-Encoders »
Achille Thin · Nikita Kotelevskii · Arnaud Doucet · Alain Durmus · Eric Moulines · Maxim Panov -
2021 Poster: DG-LMC: A Turn-key and Scalable Synchronous Distributed MCMC Algorithm via Langevin Monte Carlo within Gibbs »
Vincent Plassier · Maxime Vono · Alain Durmus · Eric Moulines -
2021 Oral: DG-LMC: A Turn-key and Scalable Synchronous Distributed MCMC Algorithm via Langevin Monte Carlo within Gibbs »
Vincent Plassier · Maxime Vono · Alain Durmus · Eric Moulines -
2021 Poster: Counterfactual Credit Assignment in Model-Free Reinforcement Learning »
Thomas Mesnard · Theophane Weber · Fabio Viola · Shantanu Thakoor · Alaa Saade · Anna Harutyunyan · Will Dabney · Thomas Stepleton · Nicolas Heess · Arthur Guez · Eric Moulines · Marcus Hutter · Lars Buesing · Remi Munos -
2021 Spotlight: Counterfactual Credit Assignment in Model-Free Reinforcement Learning »
Thomas Mesnard · Theophane Weber · Fabio Viola · Shantanu Thakoor · Alaa Saade · Anna Harutyunyan · Will Dabney · Thomas Stepleton · Nicolas Heess · Arthur Guez · Eric Moulines · Marcus Hutter · Lars Buesing · Remi Munos -
2020 Poster: Fast and Consistent Learning of Hidden Markov Models by Incorporating Non-Consecutive Correlations »
Robert Mattila · Cristian R. Rojas · Eric Moulines · Vikram Krishnamurthy · Bo Wahlberg