Timezone: »
Gaussian Processes (GPs) offer an attractive method for regression over small, structured and correlated datasets. However, their deployment is hindered by computational costs and limited guidelines on how to apply GPs beyond simple low-dimensional datasets. We propose a framework to identify the suitability of GPs to a given problem and how to set up a robust and well-specified GP model. The guidelines formalise the decisions of experienced GP practitioners, with an emphasis on kernel design and scaling options. The framework is then applied to a case study of glacier elevation change and yields more accurate results at test time.
Author Information
Kenza Tazi (University of Cambridge)
Jihao Andreas Lin (University of Cambridge)
ST John (Aalto University, Finnish Center for Artificial Intelligence)
Hong Ge (University of Cambridge)
Richard E Turner (University of Cambridge)
Richard Turner holds a Lectureship (equivalent to US Assistant Professor) in Computer Vision and Machine Learning in the Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, UK. He is a Fellow of Christ's College Cambridge. Previously, he held an EPSRC Postdoctoral research fellowship which he spent at both the University of Cambridge and the Laboratory for Computational Vision, NYU, USA. He has a PhD degree in Computational Neuroscience and Machine Learning from the Gatsby Computational Neuroscience Unit, UCL, UK and a M.Sci. degree in Natural Sciences (specialism Physics) from the University of Cambridge, UK. His research interests include machine learning, signal processing and developing probabilistic models of perception.
Ross Viljoen (University of Cambridge)
Alex Gardner (Jet Propulsion Laboratory)
More from the Same Authors
-
2021 : Attacking Few-Shot Classifiers with Adversarial Support Poisoning »
Elre Oldewage · John Bronskill · Richard E Turner -
2023 : Minimal Random Code Learning with Mean-KL Parameterization »
Jihao Andreas Lin · Gergely Flamich · Jose Miguel Hernandez-Lobato -
2023 : Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers »
Phillip Lippe · Bastiaan Veeling · Paris Perdikaris · Richard E Turner · Johannes Brandstetter -
2023 Oral: Memory-Based Dual Gaussian Processes for Sequential Learning »
Paul Chang · Prakhar Verma · ST John · Arno Solin · Khan Emtiyaz -
2023 Poster: Improving Hyperparameter Learning under Approximate Inference in Gaussian Process Models »
Rui Li · ST John · Arno Solin -
2023 Poster: Causal Modeling of Policy Interventions From Treatment–Outcome Sequences »
Çağlar Hızlı · ST John · Anne Juuti · Tuure Saarinen · Kirsi Pietiläinen · Pekka Marttinen -
2023 Poster: Memory-Based Dual Gaussian Processes for Sequential Learning »
Paul Chang · Prakhar Verma · ST John · Arno Solin · Khan Emtiyaz -
2020 : Open discussion in breakout rooms »
Shakir Mohamed · Faris Gezahegn · ST John -
2020 Poster: Scalable Exact Inference in Multi-Output Gaussian Processes »
Wessel Bruinsma · Eric Perim Martins · William Tebbutt · Scott Hosking · Arno Solin · Richard E Turner -
2020 Social: Queer in AI Social (I) »
Alex Markham · ST John -
2020 : Outro / move to discussion groups »
ST John -
2020 Poster: TaskNorm: Rethinking Batch Normalization for Meta-Learning »
John Bronskill · Jonathan Gordon · James Requeima · Sebastian Nowozin · Richard E Turner -
2020 : Intro »
ST John -
2020 Affinity Workshop: Queer in AI »
ST John · William Agnew · Anja Meunier · Alex Markham · Manu Saraswat · Andrew McNamara · Raphael Gontijo Lopes -
2018 Poster: Large-Scale Cox Process Inference using Variational Fourier Features »
ST John · James Hensman -
2018 Oral: Large-Scale Cox Process Inference using Variational Fourier Features »
ST John · James Hensman -
2018 Poster: The Mirage of Action-Dependent Baselines in Reinforcement Learning »
George Tucker · Surya Bhupatiraju · Shixiang Gu · Richard E Turner · Zoubin Ghahramani · Sergey Levine -
2018 Oral: The Mirage of Action-Dependent Baselines in Reinforcement Learning »
George Tucker · Surya Bhupatiraju · Shixiang Gu · Richard E Turner · Zoubin Ghahramani · Sergey Levine -
2018 Poster: Structured Evolution with Compact Architectures for Scalable Policy Optimization »
Krzysztof Choromanski · Mark Rowland · Vikas Sindhwani · Richard E Turner · Adrian Weller -
2018 Oral: Structured Evolution with Compact Architectures for Scalable Policy Optimization »
Krzysztof Choromanski · Mark Rowland · Vikas Sindhwani · Richard E Turner · Adrian Weller -
2017 Poster: Magnetic Hamiltonian Monte Carlo »
Nilesh Tripuraneni · Mark Rowland · Zoubin Ghahramani · Richard E Turner -
2017 Talk: Magnetic Hamiltonian Monte Carlo »
Nilesh Tripuraneni · Mark Rowland · Zoubin Ghahramani · Richard E Turner -
2017 Poster: Sequence Tutor: Conservative fine-tuning of sequence generation models with KL-control »
Natasha Jaques · Shixiang Gu · Dzmitry Bahdanau · Jose Miguel Hernandez-Lobato · Richard E Turner · Douglas Eck -
2017 Talk: Sequence Tutor: Conservative fine-tuning of sequence generation models with KL-control »
Natasha Jaques · Shixiang Gu · Dzmitry Bahdanau · Jose Miguel Hernandez-Lobato · Richard E Turner · Douglas Eck