Timezone: »
We find that generative models can be great test-time adapters for discriminative models. We propose a method to adapt pre-trained classifiers and large-scale CLIP models to individual unlabelled images by modulating the text conditioning of a text-conditional pretrained image diffusion model and maximizing the image likelihood using end-to-end backpropagation to the classifier parameters. We improve the classification accuracy of various pretrained classifiers on various datasets, including ImageNet and its variants. Further we show that our approach significantly outperforms previous test-time adaptation methods. To the best of our knowledge, this is the first work that adapts pre-trained large-scale discriminative models to individual images; all previous works require co-training under joint discriminative and self-supervised objectives, to apply at test time, which prevents them from adapting readily available models.
Author Information
Mihir Prabhudesai (Carnegie Mellon University)
Tsung-Wei Ke (CMU, Carnegie Mellon University)
Alexander Li (Carnegie Mellon University)
Deepak Pathak (Carnegie Mellon University)
Katerina Fragkiadaki (Carnegie Mellon University)
More from the Same Authors
-
2021 : Discovering and Achieving Goals with World Models »
Russell Mendonca · Oleh Rybkin · Kostas Daniilidis · Danijar Hafner · Deepak Pathak -
2023 : Internet Explorer: Targeted Representation Learning on the Open Web »
Alexander Li · Ellis Brown · Alexei Efros · Deepak Pathak -
2023 : Your Diffusion Model is Secretly a Zero-Shot Classifier »
Alexander Li · Mihir Prabhudesai · Shivam Duggal · Ellis Brown · Deepak Pathak -
2023 Poster: Efficient RL via Disentangled Environment and Agent Representations »
Kevin Gmelin · Shikhar Bahl · Russell Mendonca · Deepak Pathak -
2023 Oral: Efficient RL via Disentangled Environment and Agent Representations »
Kevin Gmelin · Shikhar Bahl · Russell Mendonca · Deepak Pathak -
2023 Poster: Internet Explorer: Targeted Representation Learning on the Open Web »
Alexander Li · Ellis Brown · Alexei Efros · Deepak Pathak -
2023 Poster: Test-time Adaptation with Slot-Centric Models »
Mihir Prabhudesai · Anirudh Goyal · Sujoy Paul · Sjoerd van Steenkiste · Mehdi S. M. Sajjadi · Gaurav Aggarwal · Thomas Kipf · Deepak Pathak · Katerina Fragkiadaki -
2022 Poster: Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents »
Wenlong Huang · Pieter Abbeel · Deepak Pathak · Igor Mordatch -
2022 Spotlight: Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents »
Wenlong Huang · Pieter Abbeel · Deepak Pathak · Igor Mordatch -
2022 Poster: Zero-Shot Reward Specification via Grounded Natural Language »
Parsa Mahmoudieh · Deepak Pathak · Trevor Darrell -
2022 Poster: REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy Transfer »
Xingyu Liu · Deepak Pathak · Kris Kitani -
2022 Spotlight: Zero-Shot Reward Specification via Grounded Natural Language »
Parsa Mahmoudieh · Deepak Pathak · Trevor Darrell -
2022 Oral: REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy Transfer »
Xingyu Liu · Deepak Pathak · Kris Kitani -
2021 Workshop: Self-Supervised Learning for Reasoning and Perception »
Pengtao Xie · Shanghang Zhang · Ishan Misra · Pulkit Agrawal · Katerina Fragkiadaki · Ruisi Zhang · Tassilo Klein · Asli Celikyilmaz · Mihaela van der Schaar · Eric Xing -
2021 : Oral Presentation: Discovering and Achieving Goals with World Models »
Oleh Rybkin · Deepak Pathak -
2021 Poster: Differentiable Spatial Planning using Transformers »
Devendra Singh Chaplot · Deepak Pathak · Jitendra Malik -
2021 Spotlight: Differentiable Spatial Planning using Transformers »
Devendra Singh Chaplot · Deepak Pathak · Jitendra Malik -
2021 Poster: Unsupervised Learning of Visual 3D Keypoints for Control »
Boyuan Chen · Pieter Abbeel · Deepak Pathak -
2021 Spotlight: Unsupervised Learning of Visual 3D Keypoints for Control »
Boyuan Chen · Pieter Abbeel · Deepak Pathak -
2020 Poster: One Policy to Control Them All: Shared Modular Policies for Agent-Agnostic Control »
Wenlong Huang · Igor Mordatch · Deepak Pathak -
2020 Poster: Planning to Explore via Self-Supervised World Models »
Ramanan Sekar · Oleh Rybkin · Kostas Daniilidis · Pieter Abbeel · Danijar Hafner · Deepak Pathak -
2019 : Embodied language grounding »
Katerina Fragkiadaki -
2019 Poster: Self-Supervised Exploration via Disagreement »
Deepak Pathak · Dhiraj Gandhi · Abhinav Gupta -
2019 Oral: Self-Supervised Exploration via Disagreement »
Deepak Pathak · Dhiraj Gandhi · Abhinav Gupta -
2018 Poster: Investigating Human Priors for Playing Video Games »
Rachit Dubey · Pulkit Agrawal · Deepak Pathak · Tom Griffiths · Alexei Efros -
2018 Oral: Investigating Human Priors for Playing Video Games »
Rachit Dubey · Pulkit Agrawal · Deepak Pathak · Tom Griffiths · Alexei Efros -
2017 Poster: Curiosity-driven Exploration by Self-supervised Prediction »
Deepak Pathak · Pulkit Agrawal · Alexei Efros · Trevor Darrell -
2017 Talk: Curiosity-driven Exploration by Self-supervised Prediction »
Deepak Pathak · Pulkit Agrawal · Alexei Efros · Trevor Darrell