Timezone: »
Episodic replay methods, which store and replay past data, have been effective in handling distribution shifts in continual learning. However, due to regulatory and privacy concerns for data sharing, their applicability can be limited. In this work, we introduce two novel healthcare benchmarks for domain incremental continual learning: diabetic retinopathy severity classification and dermoscopy skin lesion detection, and highlight issues of poor forward and backward transferability in simple baselines. To overcome these challenges, we propose a novel method called prompt-based generative replay. By leveraging a text-to-image diffusion model for synthetic data generation, our approach effectively preserves previously learned knowledge while adapting to new data distributions. Our experiments demonstratethat our prompt-based generative replay significantly outperforms competitive baselines, resulting in an average increase of up to 5 points in average AUC for the skin lesions benchmark and up to 2 points for the diabetic retinopathy benchmark.
Author Information
Yewon Byun (Carnegie Mellon University)
Saurabh Garg (Carnegie Mellon University)
Sanket Vaibhav Mehta (Carnegie Mellon University)
Jayashree Kalpathy-Cramer (University of Colorado School of Medicine)
Praveer Singh (University of Colorado School of Medicine)
Bryan Wilder (Carnegie Mellon University)
Zachary Lipton (0)
More from the Same Authors
-
2022 : Domain Adaptation under Open Set Label Shift »
Saurabh Garg · Sivaraman Balakrishnan · Zachary Lipton -
2022 : Unsupervised Learning under Latent Label Shift »
Pranav Mani · Manley Roberts · Saurabh Garg · Zachary Lipton -
2022 : Characterizing Datapoints via Second-Split Forgetting »
Pratyush Maini · Saurabh Garg · Zachary Lipton · Zico Kolter -
2023 : Adapting to Gradual Distribution Shifts with Continual Weight Averaging »
Jared Fernandez · Saujas Vaduguru · Sanket Vaibhav Mehta · Yonatan Bisk · Emma Strubell -
2023 : (Almost) Provable Error Bounds Under Distribution Shift via Disagreement Discrepancy »
Elan Rosenfeld · Saurabh Garg -
2023 : Complementary Benefits of Contrastive Learning and Self-Training Under Distribution Shift »
Saurabh Garg · Amrith Setlur · Zachary Lipton · Sivaraman Balakrishnan · Virginia Smith · Aditi Raghunathan -
2023 : (Almost) Provable Error Bounds Under Distribution Shift via Disagreement Discrepancy »
Elan Rosenfeld · Saurabh Garg -
2023 : Making Scalable Meta Learning Practical »
Sang Keun Choe · Sanket Vaibhav Mehta · Hwijeen Ahn · Willie Neiswanger · Pengtao Xie · Emma Strubell · Eric Xing -
2023 : Bayesian Neural Networks with Domain Knowledge »
Dylan Sam · Rattana Pukdee · Daniel Jeong · Yewon Byun · Zico Kolter -
2023 : Identifying Inequity in Treatment Allocation »
Yewon Byun · Dylan Sam · Zachary Lipton · Bryan Wilder -
2023 : Conditional Diffusion Replay for Continual Learning in Medical Settings »
Yewon Byun · Saurabh Garg · Sanket Vaibhav Mehta · Praveer Singh · Jayashree Kalpathy-cramer · Bryan Wilder · Zachary Lipton -
2023 : (Almost) Provable Error Bounds Under Distribution Shift via Disagreement Discrepancy »
Elan Rosenfeld · Saurabh Garg -
2023 Poster: Improved Policy Evaluation for Randomized Trials of Algorithmic Resource Allocation »
Aditya Mate · Bryan Wilder · Aparna Taneja · Milind Tambe -
2023 Poster: RLSbench: Domain Adaptation Under Relaxed Label Shift »
Saurabh Garg · Nick Erickson · University of California James Sharpnack · Alex Smola · Sivaraman Balakrishnan · Zachary Lipton -
2023 Poster: CHiLS: Zero-Shot Image Classification with Hierarchical Label Sets »
Zachary Novack · Julian McAuley · Zachary Lipton · Saurabh Garg -
2022 Workshop: Principles of Distribution Shift (PODS) »
Elan Rosenfeld · Saurabh Garg · Shibani Santurkar · Jamie Morgenstern · Hossein Mobahi · Zachary Lipton · Andrej Risteski -
2021 : Oral3 »
Sanket Vaibhav Mehta -
2021 Poster: RATT: Leveraging Unlabeled Data to Guarantee Generalization »
Saurabh Garg · Sivaraman Balakrishnan · Zico Kolter · Zachary Lipton -
2021 Oral: RATT: Leveraging Unlabeled Data to Guarantee Generalization »
Saurabh Garg · Sivaraman Balakrishnan · Zico Kolter · Zachary Lipton -
2021 Poster: On Proximal Policy Optimization's Heavy-tailed Gradients »
Saurabh Garg · Joshua Zhanson · Emilio Parisotto · Adarsh Prasad · Zico Kolter · Zachary Lipton · Sivaraman Balakrishnan · Ruslan Salakhutdinov · Pradeep Ravikumar -
2021 Spotlight: On Proximal Policy Optimization's Heavy-tailed Gradients »
Saurabh Garg · Joshua Zhanson · Emilio Parisotto · Adarsh Prasad · Zico Kolter · Zachary Lipton · Sivaraman Balakrishnan · Ruslan Salakhutdinov · Pradeep Ravikumar -
2020 : Contributed Talk 3: A Unified View of Label Shift Estimation »
Saurabh Garg