Timezone: »
The introduction of diffusion models in anomaly detection has paved the way for more effective and accurate image reconstruction in pathologies. However, the current limitations in controlling noise granularity hinder the ability of diffusion models to generalize across diverse anomaly types and compromise the restoration of healthy tissues. To overcome these challenges, we propose AutoDDPM, a novel approach that enhances the robustness of diffusion models. AutoDDPM utilizes diffusion models to generate initial likelihood maps of potential anomalies and seamlessly integrates them with the original image. Through joint noised distribution re-sampling, AutoDDPM achieves harmonization and in-painting effects. Our study demonstrates the efficacy of AutoDDPM in replacing anomalous regions while preserving healthy tissues, considerably surpassing diffusion models' limitations. It also contributes valuable insights and analysis on the limitations of current diffusion models, promoting robust and interpretable anomaly detection in medical imaging — an essential aspect of building autonomous clinical decision systems with higher interpretability.
Author Information
Cosmin Bercea (Technische Universität München)
Michael Neumayr (Department of Informatics, Technische Universität München)
Daniel Rueckert (Imperial College London)
Julia Schnabel (King's College London)
More from the Same Authors
-
2021 : Sensitivity analysis in differentially private machine learning using hybrid automatic differentiation »
Alexander Ziller · Dmitrii Usynin · Moritz Knolle · Kritika Prakash · Andrew Trask · Marcus Makowski · Rickmer Braren · Daniel Rueckert · Georgios Kaissis -
2021 : Differentially private training of neural networks with Langevin dynamics for calibrated predictive uncertainty »
Moritz Knolle · Alexander Ziller · Dmitrii Usynin · Rickmer Braren · Marcus Makowski · Daniel Rueckert · Georgios Kaissis -
2021 Workshop: Interpretable Machine Learning in Healthcare »
Yuyin Zhou · Xiaoxiao Li · Vicky Yao · Pengtao Xie · DOU QI · Nicha Dvornek · Julia Schnabel · Judy Wawira · Yifan Peng · Ronald Summers · Alan Karthikesalingam · Lei Xing · Eric Xing -
2018 Poster: Semi-Supervised Learning via Compact Latent Space Clustering »
Konstantinos Kamnitsas · Daniel C. Castro · Loic Le Folgoc · Ian Walker · Ryutaro Tanno · Daniel Rueckert · Ben Glocker · Antonio Criminisi · Aditya Nori -
2018 Oral: Semi-Supervised Learning via Compact Latent Space Clustering »
Konstantinos Kamnitsas · Daniel C. Castro · Loic Le Folgoc · Ian Walker · Ryutaro Tanno · Daniel Rueckert · Ben Glocker · Antonio Criminisi · Aditya Nori