Timezone: »
Connecting Certified and Adversarial Training
Yuhao Mao · Mark Müller · Marc Fischer · Martin Vechev
Fri Jul 28 06:20 PM -- 06:50 PM (PDT) @
Training certifiably robust neural networks remains a notoriously hard problem. While adversarial training optimizes under-approximations of the worst-case loss, which leads to insufficient regularization for certification, certified training methods, optimize loose over-approximations, leading to over-regularization and poor accuracy. In this work, we propose TAPS, a novel certified training method combining IBP and PGD training to optimize more precise, although not necessarily sound, worst-case loss approximations, reducing over-regularization and increasing certified accuracy. Empirically, TAPS achieves a new state-of-the-art in many settings, e.g., reaching a certified accuracy of 22\% on TinyImageNet for $\ell_\infty$-perturbations with radius $\epsilon=1/255$.
Author Information
Yuhao Mao (ETH Zurich)
Mark Müller (ETH Zurich)
Marc Fischer (ETH Zurich)
Martin Vechev (ETH Zurich)
More from the Same Authors
-
2021 : Automated Discovery of Adaptive Attacks on Adversarial Defenses »
Chengyuan Yao · Pavol Bielik · Petar Tsankov · Martin Vechev -
2023 : Incentivizing Honesty among Competitors in Collaborative Learning »
Florian Dorner · Nikola Konstantinov · Georgi Pashaliev · Martin Vechev -
2023 : Programmable Synthetic Tabular Data Generation »
Mark Vero · Mislav Balunovic · Martin Vechev -
2023 : Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning »
Kostadin Garov · Dimitar I. Dimitrov · Nikola Jovanović · Martin Vechev -
2023 : Large Language Models are Zero-Shot Multi-Tool Users »
Luca Beurer-Kellner · Marc Fischer · Martin Vechev -
2023 : LMQL Chat: Scripted Chatbot Development »
Luca Beurer-Kellner · Marc Fischer · Martin Vechev -
2023 : Large Language Models for Code: Security Hardening and Adversarial Testing »
Jingxuan He · Martin Vechev -
2023 : Understanding Certified Training with Interval Bound Propagation »
Yuhao Mao · Mark Müller · Marc Fischer · Martin Vechev -
2023 Workshop: 2nd Workshop on Formal Verification of Machine Learning »
Mark Müller · Brendon G. Anderson · Leslie Rice · Zhouxing Shi · Shubham Ugare · Huan Zhang · Martin Vechev · Zico Kolter · Somayeh Sojoudi · Cho-Jui Hsieh -
2023 Poster: FARE: Provably Fair Representation Learning with Practical Certificates »
Nikola Jovanović · Mislav Balunovic · Dimitar I. Dimitrov · Martin Vechev -
2023 Poster: TabLeak: Tabular Data Leakage in Federated Learning »
Mark Vero · Mislav Balunovic · Dimitar I. Dimitrov · Martin Vechev -
2022 Workshop: Workshop on Formal Verification of Machine Learning »
Huan Zhang · Leslie Rice · Kaidi Xu · aditi raghunathan · Wan-Yi Lin · Cho-Jui Hsieh · Clark Barrett · Martin Vechev · Zico Kolter -
2022 Poster: On Distribution Shift in Learning-based Bug Detectors »
Jingxuan He · Luca Beurer-Kellner · Martin Vechev -
2022 Spotlight: On Distribution Shift in Learning-based Bug Detectors »
Jingxuan He · Luca Beurer-Kellner · Martin Vechev -
2021 Poster: TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer »
Berkay Berabi · Jingxuan He · Veselin Raychev · Martin Vechev -
2021 Poster: Scalable Certified Segmentation via Randomized Smoothing »
Marc Fischer · Maximilian Baader · Martin Vechev -
2021 Spotlight: TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer »
Berkay Berabi · Jingxuan He · Veselin Raychev · Martin Vechev -
2021 Spotlight: Scalable Certified Segmentation via Randomized Smoothing »
Marc Fischer · Maximilian Baader · Martin Vechev -
2021 Poster: PODS: Policy Optimization via Differentiable Simulation »
Miguel Angel Zamora Mora · Momchil Peychev · Sehoon Ha · Martin Vechev · Stelian Coros -
2021 Spotlight: PODS: Policy Optimization via Differentiable Simulation »
Miguel Angel Zamora Mora · Momchil Peychev · Sehoon Ha · Martin Vechev · Stelian Coros -
2020 Poster: Adversarial Robustness for Code »
Pavol Bielik · Martin Vechev -
2020 Poster: Adversarial Attacks on Probabilistic Autoregressive Forecasting Models »
Raphaël Dang-Nhu · Gagandeep Singh · Pavol Bielik · Martin Vechev -
2019 Poster: DL2: Training and Querying Neural Networks with Logic »
Marc Fischer · Mislav Balunovic · Dana Drachsler-Cohen · Timon Gehr · Ce Zhang · Martin Vechev -
2019 Oral: DL2: Training and Querying Neural Networks with Logic »
Marc Fischer · Mislav Balunovic · Dana Drachsler-Cohen · Timon Gehr · Ce Zhang · Martin Vechev -
2018 Poster: Training Neural Machines with Trace-Based Supervision »
Matthew Mirman · Dimitar Dimitrov · Pavle Djordjevic · Timon Gehr · Martin Vechev -
2018 Oral: Training Neural Machines with Trace-Based Supervision »
Matthew Mirman · Dimitar Dimitrov · Pavle Djordjevic · Timon Gehr · Martin Vechev -
2018 Poster: Differentiable Abstract Interpretation for Provably Robust Neural Networks »
Matthew Mirman · Timon Gehr · Martin Vechev -
2018 Oral: Differentiable Abstract Interpretation for Provably Robust Neural Networks »
Matthew Mirman · Timon Gehr · Martin Vechev