Timezone: »
Physics-informed neural networks (PINN) have been proven efficient at solving partial differential equations (PDE). However, previous works have failed to provide guarantees on the worst-case residual error of a PINN across the spatio-temporal domain – a measure akin to the tolerance of numerical solvers – focusing instead on point-wise comparisons between their solution and the ones obtained by a solver at a set of inputs. In real-world applications, one cannot consider tests on a finite set of points to be sufficient grounds for deployment. To alleviate this issue, we establish tolerance-based correctness conditions for PINNs over the entire input domain. To verify the extent to which they hold, we introduce ∂-CROWN: a general and efficient post-training framework to bound PINN errors. We demonstrate its effectiveness in obtaining tight certificates by applying it to two classical PINNs – Burgers’ and Schrödinger's equations –, and two more challenging ones – the Allan-Cahn and Diffusion-Sorption equations.
Author Information
Francisco Girbal Eiras (University of Oxford)
Adel Bibi (University of Oxford)
Rudy Bunel (Deepmind)
Krishnamurthy Dvijotham (Google DeepMind)
Phil Torr (Oxford)
M. Pawan Kumar (DeepMind)
More from the Same Authors
-
2021 : Combating Adversaries with Anti-Adversaries »
Motasem Alfarra · Juan C Perez · Ali Thabet · Adel Bibi · Phil Torr · Bernard Ghanem -
2021 : Detecting and Quantifying Malicious Activity with Simulation-based Inference »
Andrew Gambardella · Naeemullah Khan · Phil Torr · Atilim Gunes Baydin -
2022 : Make Some Noise: Reliable and Efficient Single-Step Adversarial Training »
Pau de Jorge Aranda · Adel Bibi · Riccardo Volpi · Amartya Sanyal · Phil Torr · Gregory Rogez · Puneet Dokania -
2022 : Catastrophic overfitting is a bug but also a feature »
Guillermo Ortiz Jimenez · Pau de Jorge Aranda · Amartya Sanyal · Adel Bibi · Puneet Dokania · Pascal Frossard · Gregory Rogez · Phil Torr -
2022 : Illusionary Attacks on Sequential Decision Makers and Countermeasures »
Tim Franzmeyer · Joao Henriques · Jakob Foerster · Phil Torr · Adel Bibi · Christian Schroeder -
2022 : How robust are pre-trained models to distribution shift? »
Yuge Shi · Imant Daunhawer · Julia Vogt · Phil Torr · Amartya Sanyal -
2022 : How robust are pre-trained models to distribution shift? »
Yuge Shi · Imant Daunhawer · Julia Vogt · Phil Torr · Amartya Sanyal -
2022 : IBP Regularization for Verified Adversarial Robustness via Branch-and-Bound »
Alessandro De Palma · Rudy Bunel · Krishnamurthy Dvijotham · M. Pawan Kumar · Robert Stanforth -
2023 : Illusory Attacks: Detectability Matters in Adversarial Attacks on Sequential Decision-Makers »
Tim Franzmeyer · Stephen Mcaleer · Joao Henriques · Jakob Foerster · Phil Torr · Adel Bibi · Christian Schroeder -
2023 : Certified Calibration: Bounding Worst-Case Calibration under Adversarial Attacks »
Cornelius Emde · Francesco Pinto · Thomas Lukasiewicz · Phil Torr · Adel Bibi -
2023 : Certifying Ensembles: A General Certification Theory with S-Lipschitzness »
Aleksandar Petrov · Francisco Eiras · Amartya Sanyal · Phil Torr · Adel Bibi -
2023 : Language Model Tokenizers Introduce Unfairness Between Languages »
Aleksandar Petrov · Emanuele La Malfa · Phil Torr · Adel Bibi -
2023 : Who to imitate: Imitating desired behavior from diverse multi-agent datasets »
Tim Franzmeyer · Jakob Foerster · Edith Elkind · Phil Torr · Joao Henriques -
2023 : Outstanding Paper: Provably Correct Physics-Informed Neural Networks - Francisco Eiras, Adel Bibi, Rudy Bunel, Krishnamurthy Dj Dvijotham, Philip H.S. Torr, M. Pawan Kumar »
Francisco Girbal Eiras -
2023 Poster: Graph Inductive Biases in Transformers without Message Passing »
Liheng Ma · Chen Lin · Derek Lim · Adriana Romero Soriano · Puneet Dokania · Mark Coates · Phil Torr · Ser Nam Lim -
2023 Poster: Certifying Ensembles: A General Certification Theory with S-Lipschitzness »
Aleksandar Petrov · Francisco Eiras · Amartya Sanyal · Phil Torr · Adel Bibi -
2022 : Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the Age of AI-NIDS »
Christian Schroeder · Yongchao Huang · Phil Torr · Martin Strohmeier -
2022 : IBP Regularization for Verified Adversarial Robustness via Branch-and-Bound »
Alessandro De Palma · Rudy Bunel · Krishnamurthy Dvijotham · M. Pawan Kumar · Robert Stanforth -
2022 : Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the Age of AI-NIDS »
Christian Schroeder · Yongchao Huang · Phil Torr · Martin Strohmeier -
2022 : Invited Talk 3 (M. Pawan Kumar): Neural Networks for Neural Network Verification »
M. Pawan Kumar -
2022 Poster: Adversarial Masking for Self-Supervised Learning »
Yuge Shi · Siddharth N · Phil Torr · Adam Kosiorek -
2022 Spotlight: Adversarial Masking for Self-Supervised Learning »
Yuge Shi · Siddharth N · Phil Torr · Adam Kosiorek -
2022 Poster: Communicating via Markov Decision Processes »
Samuel Sokota · Christian Schroeder · Maximilian Igl · Luisa Zintgraf · Phil Torr · Martin Strohmeier · Zico Kolter · Shimon Whiteson · Jakob Foerster -
2022 Spotlight: Communicating via Markov Decision Processes »
Samuel Sokota · Christian Schroeder · Maximilian Igl · Luisa Zintgraf · Phil Torr · Martin Strohmeier · Zico Kolter · Shimon Whiteson · Jakob Foerster -
2017 Poster: Stabilising Experience Replay for Deep Multi-Agent Reinforcement Learning »
Jakob Foerster · Nantas Nardelli · Gregory Farquhar · Triantafyllos Afouras · Phil Torr · Pushmeet Kohli · Shimon Whiteson -
2017 Talk: Stabilising Experience Replay for Deep Multi-Agent Reinforcement Learning »
Jakob Foerster · Nantas Nardelli · Gregory Farquhar · Triantafyllos Afouras · Phil Torr · Pushmeet Kohli · Shimon Whiteson