Timezone: »
Learning to predict properties of large graphs is challenging because each prediction requires the knowledge of an entire graph, while the amount of memory available during training is bounded. Here we propose Graph Segment Training (GST), a general framework that utilizes a divide-and-conquer approach to allow learning large graph property prediction with a constant memory footprint. GST first divides a large graph into segments and then backpropagates through only a few segments sampled per training iteration. We refine the GST paradigm by introducing a historical embedding table to efficiently obtain embeddings for segments not sampled for backpropagation. To mitigate the staleness of historical embeddings, we design two novel techniques. First, we finetune the prediction head to fix the input distribution shift. Second, we introduce Stale Embedding Dropout to drop some stale embeddings during training to reduce bias. We evaluate our complete method GST-EFD (with all the techniques together) on two large graph property prediction benchmarks: MalNet and TpuGraphs. Our experiments show that GST-EFD is both memory-efficient and fast, while offering a slight boost on test accuracy over a typical full graph training regime.
Author Information
Kaidi Cao (Stanford University)
Phitchaya Phothilimthana (Google)
Sami Abu-El-Haija (USC Information Sciences Institute)
Dustin Zelle (Google LLC)
Yanqi Zhou (Google)
Charith Mendis (University of Illinois at Urbana-Champaign)
Jure Leskovec (Stanford University)
Bryan Perozzi (Google Research)
More from the Same Authors
-
2022 : LinkBERT: Language Model Pretraining with Document Link Knowledge »
Michihiro Yasunaga · Jure Leskovec · Percy Liang -
2023 : Retrieval-Augmented Multimodal Language Modeling »
Michihiro Yasunaga · Armen Aghajanyan · Weijia Shi · Rich James · Jure Leskovec · Percy Liang · Mike Lewis · Luke Zettlemoyer · Wen-tau Yih -
2023 : PRODIGY: Enabling In-context Learning Over Graphs »
Qian Huang · Hongyu Ren · Peng Chen · Gregor Kržmanc · Daniel Zeng · Percy Liang · Jure Leskovec -
2023 : Tackling Provably Hard Representative Selection viaGraph Neural Networks »
Mehran Kazemi · Anton Tsitsulin · Hossein Esfandiari · Mohammad Hossein Bateni · Deepak Ramachandran · Bryan Perozzi · Vahab Mirrokni -
2023 : Unsupervised Embedding Quality Evaluation »
Anton Tsitsulin · Marina Munkhoeva · Bryan Perozzi -
2023 : UGSL: A Unified Framework for Benchmarking Graph Structure Learning »
Bahare Fatemi · Sami Abu-El-Haija · Anton Tsitsulin · Mehran Kazemi · Dustin Zelle · Neslihan Bulut · Jonathan Halcrow · Bryan Perozzi -
2023 Poster: Geometric Latent Diffusion Models for 3D Molecule Generation »
Minkai Xu · Alexander Powers · Ron Dror · Stefano Ermon · Jure Leskovec -
2023 Poster: Graph Generative Model for Benchmarking Graph Neural Networks »
Minji Yoon · Yue Wu · John Palowitch · Bryan Perozzi · Ruslan Salakhutdinov -
2023 Poster: Lifelong Language Pretraining with Distribution-Specialized Experts »
Wuyang Chen · Yanqi Zhou · Nan Du · Yanping Huang · James Laudon · Zhifeng Chen · Claire Cui -
2023 Poster: Brainformers: Trading Simplicity for Efficiency »
Yanqi Zhou · Nan Du · Yanping Huang · Daiyi Peng · Chang Lan · Da Huang · Siamak Shakeri · David So · Andrew Dai · Yifeng Lu · Zhifeng Chen · Quoc Le · Claire Cui · James Laudon · Jeff Dean -
2023 Poster: Retrieval-Augmented Multimodal Language Modeling »
Michihiro Yasunaga · Armen Aghajanyan · Weijia Shi · Richard James · Jure Leskovec · Percy Liang · Mike Lewis · Luke Zettlemoyer · Scott Yih -
2023 Expo Talk Panel: Graph Neural Networks in TensorFlow: a Practical Guide »
Bryan Perozzi -
2022 Poster: GLaM: Efficient Scaling of Language Models with Mixture-of-Experts »
Nan Du · Yanping Huang · Andrew Dai · Simon Tong · Dmitry Lepikhin · Yuanzhong Xu · Maxim Krikun · Yanqi Zhou · Adams Wei Yu · Orhan Firat · Barret Zoph · William Fedus · Maarten Bosma · Zongwei Zhou · Tao Wang · Emma Wang · Kellie Webster · Marie Pellat · Kevin Robinson · Kathleen Meier-Hellstern · Toju Duke · Lucas Dixon · Kun Zhang · Quoc Le · Yonghui Wu · Zhifeng Chen · Claire Cui -
2022 Spotlight: GLaM: Efficient Scaling of Language Models with Mixture-of-Experts »
Nan Du · Yanping Huang · Andrew Dai · Simon Tong · Dmitry Lepikhin · Yuanzhong Xu · Maxim Krikun · Yanqi Zhou · Adams Wei Yu · Orhan Firat · Barret Zoph · William Fedus · Maarten Bosma · Zongwei Zhou · Tao Wang · Emma Wang · Kellie Webster · Marie Pellat · Kevin Robinson · Kathleen Meier-Hellstern · Toju Duke · Lucas Dixon · Kun Zhang · Quoc Le · Yonghui Wu · Zhifeng Chen · Claire Cui -
2022 : A simple introduction to TF-GNN models »
Dustin Zelle -
2022 : TF-GNN Q/A »
Dustin Zelle -
2022 : TF-GNN: Graph Neural Networks Inside TensorFlow »
Dustin Zelle -
2022 : Robust GNNs Q/A »
Bryan Perozzi -
2022 : Robust GNNs »
Bryan Perozzi -
2022 : Challenges with Graph Neural Networks »
Bryan Perozzi -
2022 Expo Talk Panel: Challenges Of Applying Graph Neural Networks »
Bryan Perozzi · Vahab Mirrokni -
2021 Poster: WILDS: A Benchmark of in-the-Wild Distribution Shifts »
Pang Wei Koh · Shiori Sagawa · Henrik Marklund · Sang Michael Xie · Marvin Zhang · Akshay Balsubramani · Weihua Hu · Michihiro Yasunaga · Richard Lanas Phillips · Irena Gao · Tony Lee · Etienne David · Ian Stavness · Wei Guo · Berton Earnshaw · Imran Haque · Sara Beery · Jure Leskovec · Anshul Kundaje · Emma Pierson · Sergey Levine · Chelsea Finn · Percy Liang -
2021 Oral: WILDS: A Benchmark of in-the-Wild Distribution Shifts »
Pang Wei Koh · Shiori Sagawa · Henrik Marklund · Sang Michael Xie · Marvin Zhang · Akshay Balsubramani · Weihua Hu · Michihiro Yasunaga · Richard Lanas Phillips · Irena Gao · Tony Lee · Etienne David · Ian Stavness · Wei Guo · Berton Earnshaw · Imran Haque · Sara Beery · Jure Leskovec · Anshul Kundaje · Emma Pierson · Sergey Levine · Chelsea Finn · Percy Liang -
2021 Poster: GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings »
Matthias Fey · Jan Eric Lenssen · Frank Weichert · Jure Leskovec -
2021 Spotlight: GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings »
Matthias Fey · Jan Eric Lenssen · Frank Weichert · Jure Leskovec -
2021 Poster: LEGO: Latent Execution-Guided Reasoning for Multi-Hop Question Answering on Knowledge Graphs »
Hongyu Ren · Hanjun Dai · Bo Dai · Xinyun Chen · Michihiro Yasunaga · Haitian Sun · Dale Schuurmans · Jure Leskovec · Denny Zhou -
2021 Spotlight: LEGO: Latent Execution-Guided Reasoning for Multi-Hop Question Answering on Knowledge Graphs »
Hongyu Ren · Hanjun Dai · Bo Dai · Xinyun Chen · Michihiro Yasunaga · Haitian Sun · Dale Schuurmans · Jure Leskovec · Denny Zhou -
2020 : Graph Neural Networks for Reasoning over Multimodal Content »
Jure Leskovec -
2020 Workshop: Bridge Between Perception and Reasoning: Graph Neural Networks & Beyond »
Jian Tang · Le Song · Jure Leskovec · Renjie Liao · Yujia Li · Sanja Fidler · Richard Zemel · Ruslan Salakhutdinov -
2020 : Invited Talk 7 Q&A - Jure Leskovec »
Jure Leskovec -
2020 : Invited Talk 7 - Generalizing to Novel Tasks in the Low-Data Regime - Jure Leskovec »
Jure Leskovec -
2020 : Spotlight Talk 6 - Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization »
Kaidi Cao -
2020 : Update: Open Graph Benchmark »
Jure Leskovec -
2020 Workshop: Graph Representation Learning and Beyond (GRL+) »
Petar Veličković · Michael M. Bronstein · Andreea Deac · Will Hamilton · Jessica Hamrick · Milad Hashemi · Stefanie Jegelka · Jure Leskovec · Renjie Liao · Federico Monti · Yizhou Sun · Kevin Swersky · Rex (Zhitao) Ying · Marinka Zitnik -
2020 Poster: Coresets for Data-efficient Training of Machine Learning Models »
Baharan Mirzasoleiman · Jeff Bilmes · Jure Leskovec -
2020 Poster: Graph Structure of Neural Networks »
Jiaxuan You · Jure Leskovec · Kaiming He · Saining Xie -
2020 Poster: Learning to Simulate Complex Physics with Graph Networks »
Alvaro Sanchez-Gonzalez · Jonathan Godwin · Tobias Pfaff · Rex (Zhitao) Ying · Jure Leskovec · Peter Battaglia -
2019 Poster: MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing »
Sami Abu-El-Haija · Bryan Perozzi · Amol Kapoor · Nazanin Alipourfard · Kristina Lerman · Hrayr Harutyunyan · Greg Ver Steeg · Aram Galstyan -
2019 Poster: Position-aware Graph Neural Networks »
Jiaxuan You · Rex (Zhitao) Ying · Jure Leskovec -
2019 Oral: MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing »
Sami Abu-El-Haija · Bryan Perozzi · Amol Kapoor · Nazanin Alipourfard · Kristina Lerman · Hrayr Harutyunyan · Greg Ver Steeg · Aram Galstyan -
2019 Oral: Position-aware Graph Neural Networks »
Jiaxuan You · Rex (Zhitao) Ying · Jure Leskovec -
2018 Poster: GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models »
Jiaxuan You · Rex (Zhitao) Ying · Xiang Ren · Will Hamilton · Jure Leskovec -
2018 Oral: GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models »
Jiaxuan You · Rex (Zhitao) Ying · Xiang Ren · Will Hamilton · Jure Leskovec