Timezone: »
Learning policies that are robust to changes in the environment are critical for real world deployment of Reinforcement Learning (RL) agents. They are also necessary for achieving good generalization across environment shifts.Bisimulation provides a powerful means for abstracting task relevant components of the observation and learning a succinct representation space for training the RL agent in high dimensional spaces by exploiting the rich metric structure induced by the RL dynamics. In this work, we extend the bisimulation framework to also account for context dependent observation shifts. We use simulator based learning as an exemplary setting to demonstrate the use alternate observations to learn a representation space which is invariant to observation shifts using a novel bisimulation based objective. This allows us to deploy the agent to varying observation settings during test time and generalize to unseen scenarios. Empirical analysis on the high-dimensional image based control domains demonstrates the efficacy of our method.
Author Information
Anuj Mahajan (University of Oxford)
Amy Zhang (UT Austin / FAIR)
More from the Same Authors
-
2020 : Learning Invariant Representations for Reinforcement Learning without Reconstruction »
Amy Zhang -
2020 : Multi-Task Reinforcement Learning as a Hidden-Parameter Block MDP »
Amy Zhang -
2023 Poster: Optimal Goal-Reaching Reinforcement Learning via Quasimetric Learning »
Tongzhou Wang · Antonio Torralba · Phillip Isola · Amy Zhang -
2023 Poster: LIV: Language-Image Representations and Rewards for Robotic Control »
Yecheng Jason Ma · Vikash Kumar · Amy Zhang · Osbert Bastani · Dinesh Jayaraman -
2022 : Invited talks 3, Q/A, Amy, Rich and Liting »
Liting Sun · Amy Zhang · Richard Zemel -
2022 : Invited talks 3, Amy Zhang, Rich Zemel and Liting Sun »
Amy Zhang · Richard Zemel · Liting Sun -
2022 Poster: Online Decision Transformer »
Qinqing Zheng · Amy Zhang · Aditya Grover -
2022 Poster: Robust Policy Learning over Multiple Uncertainty Sets »
Annie Xie · Shagun Sodhani · Chelsea Finn · Joelle Pineau · Amy Zhang -
2022 Poster: Bisimulation Makes Analogies in Goal-Conditioned Reinforcement Learning »
Philippe Hansen-Estruch · Amy Zhang · Ashvin Nair · Patrick Yin · Sergey Levine -
2022 Spotlight: Robust Policy Learning over Multiple Uncertainty Sets »
Annie Xie · Shagun Sodhani · Chelsea Finn · Joelle Pineau · Amy Zhang -
2022 Spotlight: Bisimulation Makes Analogies in Goal-Conditioned Reinforcement Learning »
Philippe Hansen-Estruch · Amy Zhang · Ashvin Nair · Patrick Yin · Sergey Levine -
2022 Oral: Online Decision Transformer »
Qinqing Zheng · Amy Zhang · Aditya Grover -
2022 Poster: Denoised MDPs: Learning World Models Better Than the World Itself »
Tongzhou Wang · Simon Du · Antonio Torralba · Phillip Isola · Amy Zhang · Yuandong Tian -
2022 Spotlight: Denoised MDPs: Learning World Models Better Than the World Itself »
Tongzhou Wang · Simon Du · Antonio Torralba · Phillip Isola · Amy Zhang · Yuandong Tian -
2020 : Paper spotlight: Learning Invariant Representations for Reinforcement Learning without Reconstruction »
Amy Zhang -
2018 Poster: Composable Planning with Attributes »
Amy Zhang · Sainbayar Sukhbaatar · Adam Lerer · Arthur Szlam · Facebook Rob Fergus -
2018 Oral: Composable Planning with Attributes »
Amy Zhang · Sainbayar Sukhbaatar · Adam Lerer · Arthur Szlam · Facebook Rob Fergus