Timezone: »
Real-world graphs naturally exhibit hierarchical or cyclical structures that are unfit for the typical Euclidean space. While there exist graph neural networks that leverage non-Euclidean spaces to embed such structures more accurately, these methods are confined under the message-passing paradigm, making the models vulnerable against side-effects such as oversmoothing. More recent work have proposed attention-based graph Transformers that can easily model long-range interactions, but their extensions towards non-Euclidean geometry are yet unexplored. To bridge this gap, we propose Fully Product-Stereographic Transformer, a generalization of Transformers towards operating entirely on the product of constant curvature spaces. Our model can learn the curvature appropriate for the input graph in an end-to-end fashion, without the need of additional tuning on different curvature initializations. We also provide a kernelized approach to non-Euclidean attention, which enables our model to run in cost linear to the number of nodes and edges while respecting the underlying geometry. Experiments on graph reconstruction and node classification demonstrate the benefits of our approach.
Author Information
Sungjun Cho (LG AI Research)
Seunghyuk Cho (LG AI Research)
Sungwoo Park (LG AI Research)
Hankook Lee (KAIST)
Honglak Lee (LG AI Research / U. Michigan)
Moontae Lee (University of Illinois at Chicago)
More from the Same Authors
-
2021 : Learning Action Translator for Meta Reinforcement Learning on Sparse-Reward Tasks »
Yijie Guo · Qiucheng Wu · Honglak Lee -
2023 : Few-shot Anomaly Detection via Personalization »
Sangkyung Kwak · Jongheon Jeong · Hankook Lee · Woohyuck Kim · Jinwoo Shin -
2023 : Guide Your Agent with Adaptive Multimodal Rewards »
Changyeon Kim · Younggyo Seo · Hao Liu · Lisa Lee · Jinwoo Shin · Honglak Lee · Kimin Lee -
2023 : Learning Higher Order Skills that Efficiently Compose »
Anthony Liu · Dong Ki Kim · Sungryull Sohn · Honglak Lee -
2023 : Hierarchical Decomposition Framework for Feasibility-hard Combinatorial Optimization »
Hanbum Ko · Minu Kim · Han-Seul Jeong · Sunghoon Hong · Deunsol Yoon · Youngjoon Park · Woohyung Lim · Honglak Lee · Moontae Lee · Kanghoon Lee · Sungbin Lim · Sungryull Sohn -
2023 : Hyperbolic VAE via Latent Gaussian Distributions »
Seunghyuk Cho · Juyong Lee · Dongwoo Kim -
2023 Poster: QASA: Advanced Question Answering on Scientific Articles »
Yoonjoo Lee · Kyungjae Lee · Sunghyun Park · Dasol Hwang · Jaehyeon Kim · Hong-in Lee · Moontae Lee -
2023 Poster: Go Beyond Imagination: Maximizing Episodic Reachability with World Models »
Yao Fu · Run Peng · Honglak Lee -
2023 Poster: Exploring the Benefits of Training Expert Language Models over Instruction Tuning »
Joel Jang · Seungone Kim · Seonghyeon Ye · Doyoung Kim · Lajanugen Logeswaran · Moontae Lee · Kyungjae Lee · Minjoon Seo -
2023 Poster: Neural Stochastic Differential Games for Time-series Analysis »
Sungwoo Park · Byoungwoo Park · Moontae Lee · Changhee Lee -
2021 Poster: On-the-fly Rectification for Robust Large-Vocabulary Topic Inference »
Moontae Lee · Sungjun Cho · Kun Dong · David Mimno · David Bindel -
2021 Poster: Self-Improved Retrosynthetic Planning »
Junsu Kim · Sungsoo Ahn · Hankook Lee · Jinwoo Shin -
2021 Spotlight: Self-Improved Retrosynthetic Planning »
Junsu Kim · Sungsoo Ahn · Hankook Lee · Jinwoo Shin -
2021 Spotlight: On-the-fly Rectification for Robust Large-Vocabulary Topic Inference »
Moontae Lee · Sungjun Cho · Kun Dong · David Mimno · David Bindel -
2021 Poster: Wasserstein Distributional Normalization For Robust Distributional Certification of Noisy Labeled Data »
Sungwoo Park · Junseok Kwon -
2021 Spotlight: Wasserstein Distributional Normalization For Robust Distributional Certification of Noisy Labeled Data »
Sungwoo Park · Junseok Kwon -
2021 Poster: Learning to Weight Imperfect Demonstrations »
Yunke Wang · Chang Xu · Bo Du · Honglak Lee -
2021 Poster: Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks »
Sungryull Sohn · Sungtae Lee · Jongwook Choi · Harm van Seijen · Mehdi Fatemi · Honglak Lee -
2021 Poster: Variational Empowerment as Representation Learning for Goal-Conditioned Reinforcement Learning »
Jongwook Choi · Archit Sharma · Honglak Lee · Sergey Levine · Shixiang Gu -
2021 Spotlight: Variational Empowerment as Representation Learning for Goal-Conditioned Reinforcement Learning »
Jongwook Choi · Archit Sharma · Honglak Lee · Sergey Levine · Shixiang Gu -
2021 Spotlight: Learning to Weight Imperfect Demonstrations »
Yunke Wang · Chang Xu · Bo Du · Honglak Lee -
2021 Spotlight: Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks »
Sungryull Sohn · Sungtae Lee · Jongwook Choi · Harm van Seijen · Mehdi Fatemi · Honglak Lee -
2021 Poster: State Entropy Maximization with Random Encoders for Efficient Exploration »
Younggyo Seo · Lili Chen · Jinwoo Shin · Honglak Lee · Pieter Abbeel · Kimin Lee -
2021 Poster: Generative Adversarial Networks for Markovian Temporal Dynamics: Stochastic Continuous Data Generation »
Sungwoo Park · Dong Wook Shu · Junseok Kwon -
2021 Spotlight: Generative Adversarial Networks for Markovian Temporal Dynamics: Stochastic Continuous Data Generation »
Sungwoo Park · Dong Wook Shu · Junseok Kwon -
2021 Spotlight: State Entropy Maximization with Random Encoders for Efficient Exploration »
Younggyo Seo · Lili Chen · Jinwoo Shin · Honglak Lee · Pieter Abbeel · Kimin Lee -
2020 Poster: Self-supervised Label Augmentation via Input Transformations »
Hankook Lee · Sung Ju Hwang · Jinwoo Shin -
2020 Poster: Context-aware Dynamics Model for Generalization in Model-Based Reinforcement Learning »
Kimin Lee · Younggyo Seo · Seunghyun Lee · Honglak Lee · Jinwoo Shin -
2019 Poster: Learning Latent Dynamics for Planning from Pixels »
Danijar Hafner · Timothy Lillicrap · Ian Fischer · Ruben Villegas · David Ha · Honglak Lee · James Davidson -
2019 Poster: Robust Inference via Generative Classifiers for Handling Noisy Labels »
Kimin Lee · Sukmin Yun · Kibok Lee · Honglak Lee · Bo Li · Jinwoo Shin -
2019 Poster: Learning What and Where to Transfer »
Yunhun Jang · Hankook Lee · Sung Ju Hwang · Jinwoo Shin -
2019 Poster: Similarity of Neural Network Representations Revisited »
Simon Kornblith · Mohammad Norouzi · Honglak Lee · Geoffrey Hinton -
2019 Oral: Similarity of Neural Network Representations Revisited »
Simon Kornblith · Mohammad Norouzi · Honglak Lee · Geoffrey Hinton -
2019 Oral: Robust Inference via Generative Classifiers for Handling Noisy Labels »
Kimin Lee · Sukmin Yun · Kibok Lee · Honglak Lee · Bo Li · Jinwoo Shin -
2019 Oral: Learning What and Where to Transfer »
Yunhun Jang · Hankook Lee · Sung Ju Hwang · Jinwoo Shin -
2019 Oral: Learning Latent Dynamics for Planning from Pixels »
Danijar Hafner · Timothy Lillicrap · Ian Fischer · Ruben Villegas · David Ha · Honglak Lee · James Davidson -
2018 Poster: Self-Imitation Learning »
Junhyuk Oh · Yijie Guo · Satinder Singh · Honglak Lee -
2018 Oral: Self-Imitation Learning »
Junhyuk Oh · Yijie Guo · Satinder Singh · Honglak Lee -
2018 Poster: Hierarchical Long-term Video Prediction without Supervision »
Nevan Wichers · Ruben Villegas · Dumitru Erhan · Honglak Lee -
2018 Oral: Hierarchical Long-term Video Prediction without Supervision »
Nevan Wichers · Ruben Villegas · Dumitru Erhan · Honglak Lee -
2017 Poster: Zero-Shot Task Generalization with Multi-Task Deep Reinforcement Learning »
Junhyuk Oh · Satinder Singh · Honglak Lee · Pushmeet Kohli -
2017 Talk: Zero-Shot Task Generalization with Multi-Task Deep Reinforcement Learning »
Junhyuk Oh · Satinder Singh · Honglak Lee · Pushmeet Kohli -
2017 Poster: Learning to Generate Long-term Future via Hierarchical Prediction »
Ruben Villegas · Jimei Yang · Yuliang Zou · Sungryull Sohn · Xunyu Lin · Honglak Lee -
2017 Talk: Learning to Generate Long-term Future via Hierarchical Prediction »
Ruben Villegas · Jimei Yang · Yuliang Zou · Sungryull Sohn · Xunyu Lin · Honglak Lee