Timezone: »
Open-world survival games pose significant challenges for AI algorithms due to their multi-tasking, deep exploration, and goal prioritization requirements. Despite reinforcement learning (RL) being popular for solving games, its high sample complexity limits its effectiveness in complex open-world games like Crafter or Minecraft. We propose a novel approach, SPRING, to read the game's original academic paper and use the knowledge learned to reason and play the game through a large language model (LLM). Prompted with the LaTeX source as game context and a description of the agent's current observation, our SPRING framework employs a directed acyclic graph (DAG) with game-related questions as nodes and dependencies as edges. We identify the optimal action to take in the environment by traversing the DAG and calculating LLM responses for each node in topological order, with the LLM's answer to final node directly translating to environment actions. In our experiments, we study the quality of in-context "reasoning" induced by different forms of prompts under the setting of the Crafter open-world environment. Our experiments suggest that LLMs, when prompted with consistent chain-of-thought, have great potential in completing sophisticated high-level trajectories. Quantitatively, SPRING with GPT-4 outperforms all state-of-the-art RL baselines, trained for 1M steps, without any training.
Author Information
Yue Wu (Carnegie Mellon University)
Shrimai Prabhumoye (NVIDIA)
So Yeon Min (Carngie Mellon University)
Yonatan Bisk (Carnegie Mellon University)
Ruslan Salakhutdinov (Carnegie Mellen University)
Amos Azaria (Ariel University)
Tom Mitchell (CMU)
Yuanzhi Li (CMU)
More from the Same Authors
-
2021 : When Is Generalizable Reinforcement Learning Tractable? »
Dhruv Malik · Yuanzhi Li · Pradeep Ravikumar -
2021 : Sample Efficient Reinforcement Learning In Continuous State Spaces: A Perspective Beyond Linearity »
Dhruv Malik · Aldo Pacchiano · Vishwak Srinivasan · Yuanzhi Li -
2021 : Online Sub-Sampling for Reinforcement Learning with General Function Approximation »
Dingwen Kong · Ruslan Salakhutdinov · Ruosong Wang · Lin Yang -
2021 : Towards understanding how momentum improves generalization in deep learning »
Samy Jelassi · Yuanzhi Li -
2023 : How Does Adaptive Optimization Impact Local Neural Network Geometry? »
Kaiqi Jiang · Dhruv Malik · Yuanzhi Li -
2023 : Plan, Eliminate, and Track --- Language Models are Good Teachers for Embodied Agents. »
Yue Wu · So Yeon Min · Yonatan Bisk · Ruslan Salakhutdinov · Amos Azaria · Yuanzhi Li · Tom Mitchell · Shrimai Prabhumoye -
2023 : How Do Transformers Learn Topic Structure: Towards a Mechanistic Understanding »
Yuchen Li · Yuanzhi Li · Andrej Risteski -
2023 : AutoBiasTest: Controllable Test Sentence Generation for Open-Ended Social Bias Testing in Language Models at Scale »
Rafal Kocielnik · Shrimai Prabhumoye · Vivian Zhang · R. Alvarez · Anima Anandkumar -
2023 Poster: Weighted Tallying Bandits: Overcoming Intractability via Repeated Exposure Optimality »
Dhruv Malik · Conor Igoe · Yuanzhi Li · Aarti Singh -
2023 Poster: How Do Transformers Learn Topic Structure: Towards a Mechanistic Understanding »
Yuchen Li · Yuanzhi Li · Andrej Risteski -
2023 Poster: Graph Generative Model for Benchmarking Graph Neural Networks »
Minji Yoon · Yue Wu · John Palowitch · Bryan Perozzi · Ruslan Salakhutdinov -
2023 Poster: The Benefits of Mixup for Feature Learning »
Difan Zou · Yuan Cao · Yuanzhi Li · Quanquan Gu -
2022 Poster: Towards understanding how momentum improves generalization in deep learning »
Samy Jelassi · Yuanzhi Li -
2022 Poster: Recurrent Model-Free RL Can Be a Strong Baseline for Many POMDPs »
Tianwei Ni · Benjamin Eysenbach · Ruslan Salakhutdinov -
2022 Spotlight: Recurrent Model-Free RL Can Be a Strong Baseline for Many POMDPs »
Tianwei Ni · Benjamin Eysenbach · Ruslan Salakhutdinov -
2022 Spotlight: Towards understanding how momentum improves generalization in deep learning »
Samy Jelassi · Yuanzhi Li -
2021 : Towards understanding how momentum improves generalization in deep learning »
Samy Jelassi · Yuanzhi Li -
2021 Poster: Towards Understanding and Mitigating Social Biases in Language Models »
Paul Liang · Chiyu Wu · LP Morency · Ruslan Salakhutdinov -
2021 Poster: Reasoning Over Virtual Knowledge Bases With Open Predicate Relations »
Haitian Sun · Patrick Verga · Bhuwan Dhingra · Ruslan Salakhutdinov · William Cohen -
2021 Spotlight: Reasoning Over Virtual Knowledge Bases With Open Predicate Relations »
Haitian Sun · Patrick Verga · Bhuwan Dhingra · Ruslan Salakhutdinov · William Cohen -
2021 Spotlight: Towards Understanding and Mitigating Social Biases in Language Models »
Paul Liang · Chiyu Wu · LP Morency · Ruslan Salakhutdinov -
2021 Poster: Sample Efficient Reinforcement Learning In Continuous State Spaces: A Perspective Beyond Linearity »
Dhruv Malik · Aldo Pacchiano · Vishwak Srinivasan · Yuanzhi Li -
2021 Spotlight: Sample Efficient Reinforcement Learning In Continuous State Spaces: A Perspective Beyond Linearity »
Dhruv Malik · Aldo Pacchiano · Vishwak Srinivasan · Yuanzhi Li -
2021 Poster: Toward Understanding the Feature Learning Process of Self-supervised Contrastive Learning »
Zixin Wen · Yuanzhi Li -
2021 Poster: Instabilities of Offline RL with Pre-Trained Neural Representation »
Ruosong Wang · Yifan Wu · Ruslan Salakhutdinov · Sham Kakade -
2021 Spotlight: Toward Understanding the Feature Learning Process of Self-supervised Contrastive Learning »
Zixin Wen · Yuanzhi Li -
2021 Spotlight: Instabilities of Offline RL with Pre-Trained Neural Representation »
Ruosong Wang · Yifan Wu · Ruslan Salakhutdinov · Sham Kakade -
2021 Poster: Information Obfuscation of Graph Neural Networks »
Peiyuan Liao · Han Zhao · Keyulu Xu · Tommi Jaakkola · Geoff Gordon · Stefanie Jegelka · Ruslan Salakhutdinov -
2021 Poster: Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning »
Yue Wu · Shuangfei Zhai · Nitish Srivastava · Joshua M Susskind · Jian Zhang · Ruslan Salakhutdinov · Hanlin Goh -
2021 Poster: On Proximal Policy Optimization's Heavy-tailed Gradients »
Saurabh Garg · Joshua Zhanson · Emilio Parisotto · Adarsh Prasad · Zico Kolter · Zachary Lipton · Sivaraman Balakrishnan · Ruslan Salakhutdinov · Pradeep Ravikumar -
2021 Spotlight: On Proximal Policy Optimization's Heavy-tailed Gradients »
Saurabh Garg · Joshua Zhanson · Emilio Parisotto · Adarsh Prasad · Zico Kolter · Zachary Lipton · Sivaraman Balakrishnan · Ruslan Salakhutdinov · Pradeep Ravikumar -
2021 Spotlight: Information Obfuscation of Graph Neural Networks »
Peiyuan Liao · Han Zhao · Keyulu Xu · Tommi Jaakkola · Geoff Gordon · Stefanie Jegelka · Ruslan Salakhutdinov -
2021 Spotlight: Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning »
Yue Wu · Shuangfei Zhai · Nitish Srivastava · Joshua M Susskind · Jian Zhang · Ruslan Salakhutdinov · Hanlin Goh -
2020 Workshop: Workshop on Learning in Artificial Open Worlds »
Arthur Szlam · Katja Hofmann · Ruslan Salakhutdinov · Noboru Kuno · William Guss · Kavya Srinet · Brandon Houghton -
2020 Workshop: Bridge Between Perception and Reasoning: Graph Neural Networks & Beyond »
Jian Tang · Le Song · Jure Leskovec · Renjie Liao · Yujia Li · Sanja Fidler · Richard Zemel · Ruslan Salakhutdinov -
2019 Talk: Opening Remarks »
Kamalika Chaudhuri · Ruslan Salakhutdinov -
2018 Poster: Transformation Autoregressive Networks »
Junier Oliva · Kumar Avinava Dubey · Manzil Zaheer · Barnabás Póczos · Ruslan Salakhutdinov · Eric Xing · Jeff Schneider -
2018 Oral: Transformation Autoregressive Networks »
Junier Oliva · Kumar Avinava Dubey · Manzil Zaheer · Barnabás Póczos · Ruslan Salakhutdinov · Eric Xing · Jeff Schneider -
2018 Poster: Structured Control Nets for Deep Reinforcement Learning »
Mario Srouji · Jian Zhang · Ruslan Salakhutdinov -
2018 Poster: Gated Path Planning Networks »
Lisa Lee · Emilio Parisotto · Devendra Singh Chaplot · Eric Xing · Ruslan Salakhutdinov -
2018 Oral: Structured Control Nets for Deep Reinforcement Learning »
Mario Srouji · Jian Zhang · Ruslan Salakhutdinov -
2018 Oral: Gated Path Planning Networks »
Lisa Lee · Emilio Parisotto · Devendra Singh Chaplot · Eric Xing · Ruslan Salakhutdinov -
2017 Poster: Toward Controlled Generation of Text »
Zhiting Hu · Zichao Yang · Xiaodan Liang · Ruslan Salakhutdinov · Eric Xing -
2017 Poster: Improved Variational Autoencoders for Text Modeling using Dilated Convolutions »
Zichao Yang · Zhiting Hu · Ruslan Salakhutdinov · Taylor Berg-Kirkpatrick -
2017 Talk: Improved Variational Autoencoders for Text Modeling using Dilated Convolutions »
Zichao Yang · Zhiting Hu · Ruslan Salakhutdinov · Taylor Berg-Kirkpatrick -
2017 Talk: Toward Controlled Generation of Text »
Zhiting Hu · Zichao Yang · Xiaodan Liang · Ruslan Salakhutdinov · Eric Xing