Timezone: »
Reasoning on large-scale knowledge graphs has been long dominated by embedding methods. While path-based methods possess the inductive capacity that embeddings lack, their scalability is limited by the exponential number of paths. Here we present ANet, a scalable path-based method for knowledge graph reasoning. Inspired by the A algorithm for shortest path problems, our ANet learns a priority function to select important nodes and edges at each iteration, to reduce time and memory footprint for both training and inference. The ratio of selected nodes and edges can be specified to trade off between performance and efficiency. Experiments on both transductive and inductive knowledge graph reasoning benchmarks show that ANet achieves competitive performance with existing state-of-the-art path-based methods, while merely visiting 10% nodes and 10% edges at each iteration. On a million-scale dataset ogbl-wikikg2, ANet not only achieves a new state-of-the-art result, but also converges faster than embedding methods. ANet is the first path-based method for knowledge graph reasoning at such scale.
Author Information
Zhaocheng Zhu (Mila - Quebec AI Institute)
Xinyu Yuan (Mila / UdeM)
Mikhail Galkin (Intel AI)
Louis-Pascal Xhonneux (Mila)
Ming Zhang ("Peking University, China")
Maxime Gazeau
Jian Tang (Mila-Quebec Ai Institute)
More from the Same Authors
-
2023 Oral: ProtST: Multi-Modality Learning of Protein Sequences and Biomedical Texts »
Minghao Xu · Xinyu Yuan · Santiago Miret · Jian Tang -
2023 Poster: ProtST: Multi-Modality Learning of Protein Sequences and Biomedical Texts »
Minghao Xu · Xinyu Yuan · Santiago Miret · Jian Tang -
2022 Poster: Neural-Symbolic Models for Logical Queries on Knowledge Graphs »
Zhaocheng Zhu · Mikhail Galkin · Zuobai Zhang · Jian Tang -
2022 Spotlight: Neural-Symbolic Models for Logical Queries on Knowledge Graphs »
Zhaocheng Zhu · Mikhail Galkin · Zuobai Zhang · Jian Tang -
2021 Poster: Self-supervised Graph-level Representation Learning with Local and Global Structure »
Minghao Xu · Hang Wang · Bingbing Ni · Hongyu Guo · Jian Tang -
2021 Spotlight: Self-supervised Graph-level Representation Learning with Local and Global Structure »
Minghao Xu · Hang Wang · Bingbing Ni · Hongyu Guo · Jian Tang -
2021 Poster: Learning Gradient Fields for Molecular Conformation Generation »
Chence Shi · Shitong Luo · Minkai Xu · Jian Tang -
2021 Poster: An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming »
Minkai Xu · Wujie Wang · Shitong Luo · Chence Shi · Yoshua Bengio · Rafael Gomez-Bombarelli · Jian Tang -
2021 Poster: Non-Autoregressive Electron Redistribution Modeling for Reaction Prediction »
Hangrui Bi · Hengyi Wang · Chence Shi · Connor Coley · Jian Tang · Hongyu Guo -
2021 Spotlight: Non-Autoregressive Electron Redistribution Modeling for Reaction Prediction »
Hangrui Bi · Hengyi Wang · Chence Shi · Connor Coley · Jian Tang · Hongyu Guo -
2021 Spotlight: An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming »
Minkai Xu · Wujie Wang · Shitong Luo · Chence Shi · Yoshua Bengio · Rafael Gomez-Bombarelli · Jian Tang -
2021 Oral: Learning Gradient Fields for Molecular Conformation Generation »
Chence Shi · Shitong Luo · Minkai Xu · Jian Tang -
2020 Workshop: Bridge Between Perception and Reasoning: Graph Neural Networks & Beyond »
Jian Tang · Le Song · Jure Leskovec · Renjie Liao · Yujia Li · Sanja Fidler · Richard Zemel · Ruslan Salakhutdinov -
2020 : Opening Remarks: Jian Tang & Le Song »
Jian Tang · Le Song -
2020 Poster: A Graph to Graphs Framework for Retrosynthesis Prediction »
Chence Shi · Minkai Xu · Hongyu Guo · Ming Zhang · Jian Tang -
2020 Poster: Learning to Navigate The Synthetically Accessible Chemical Space Using Reinforcement Learning »
Sai Krishna Gottipati · Boris Sattarov · Sufeng Niu · Yashaswi Pathak · Haoran Wei · Shengchao Liu · Shengchao Liu · Simon Blackburn · Karam Thomas · Connor Coley · Jian Tang · Sarath Chandar · Yoshua Bengio -
2020 Poster: Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs »
Meng Qu · Tianyu Gao · Louis-Pascal Xhonneux · Jian Tang -
2020 Poster: Continuous Graph Neural Networks »
Louis-Pascal Xhonneux · Meng Qu · Jian Tang -
2019 Poster: GMNN: Graph Markov Neural Networks »
Meng Qu · Yoshua Bengio · Jian Tang -
2019 Oral: GMNN: Graph Markov Neural Networks »
Meng Qu · Yoshua Bengio · Jian Tang