Timezone: »

Towards a Better Theoretical Understanding of Independent Subnetwork Training
Egor Shulgin · Peter Richtarik
Event URL: https://openreview.net/forum?id=ynvzUxgO4q »

Modern advancements in large-scale machine learning would be impossible without the paradigm of data-parallel distributed computing. Since distributed computing with large-scale models imparts excessive pressure on communication channels, a lot of recent research was directed towards co-designing communication compression strategies and training algorithms with the goal of reducing communication costs. While pure data parallelism allows better data scaling, it suffers from poor model scaling properties. Indeed, compute nodes are severely limited by memory constraints, preventing further increases in model size. For this reason, the latest achievements in training giant neural network models rely on some form of model parallelism as well. In this work, we take a closer theoretical look at Independent Subnetwork Training (IST), which is a recently proposed and highly effective technique for solving the aforementioned problems. We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication, and provide a precise analysis of its optimization performance on a quadratic model.

Author Information

Egor Shulgin (KAUST)
Peter Richtarik (KAUST)

Peter Richtarik is an Associate Professor of Computer Science and Mathematics at KAUST and an Associate Professor of Mathematics at the University of Edinburgh. He is an EPSRC Fellow in Mathematical Sciences, Fellow of the Alan Turing Institute, and is affiliated with the Visual Computing Center and the Extreme Computing Research Center at KAUST. Dr. Richtarik received his PhD from Cornell University in 2007, and then worked as a Postdoctoral Fellow in Louvain, Belgium, before joining Edinburgh in 2009, and KAUST in 2017. Dr. Richtarik's research interests lie at the intersection of mathematics, computer science, machine learning, optimization, numerical linear algebra, high performance computing and applied probability. Through his recent work on randomized decomposition algorithms (such as randomized coordinate descent methods, stochastic gradient descent methods and their numerous extensions, improvements and variants), he has contributed to the foundations of the emerging field of big data optimization, randomized numerical linear algebra, and stochastic methods for empirical risk minimization. Several of his papers attracted international awards, including the SIAM SIGEST Best Paper Award, the IMA Leslie Fox Prize (2nd prize, twice), and the INFORMS Computing Society Best Student Paper Award (sole runner up). He is the founder and organizer of the Optimization and Big Data workshop series.​

More from the Same Authors