Timezone: »
Differentially Private Heavy Hitters using Federated Analytics
Karan Chadha · Junye Chen · John Duchi · Vitaly Feldman · Hanieh Hashemi · Omid Javidbakht · Audra McMillan · Kunal Talwar
Event URL: https://openreview.net/forum?id=Bu95ggz1sB »
We study practical heuristics to improve the performance of prefix-tree based algorithms for differentially private heavy hitter detection. Our model assumes each user has multiple data points and the goal is to learn as many of the most frequent data points as possible across all users' data with aggregate and local differential privacy.
Author Information
Karan Chadha (Stanford University)
Junye Chen
John Duchi (Stanford University)
Vitaly Feldman (Apple)
Hanieh Hashemi (Apple)
Omid Javidbakht (Apple)
Audra McMillan (Apple)
Kunal Talwar (Apple)
More from the Same Authors
-
2021 : Lossless Compression of Efficient Private Local Randomizers »
Vitaly Feldman · Kunal Talwar -
2021 : Adapting to function difficulty and growth conditions in private optimization »
Hilal Asi · Daniel A Levy · John Duchi -
2021 : Differential Secrecy for Distributed Data and Applications to Robust Differentially Secure Vector Summation »
Kunal Talwar -
2021 : Nonparametric Differentially Private Confidence Intervals for the Median »
Joerg Drechsler · Ira Globus-Harris · Audra McMillan · Adam Smith · Jayshree Sarathy -
2021 : Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy Amplification by Shuffling »
Vitaly Feldman · Audra McMillan · Kunal Talwar -
2021 : Mean Estimation with User-level Privacy under Data Heterogeneity »
Rachel Cummings · Vitaly Feldman · Audra McMillan · Kunal Talwar -
2021 : When Is Memorization of Irrelevant Training Data Necessary for High-Accuracy Learning? »
Gavin Brown · Mark Bun · Vitaly Feldman · Adam Smith · Kunal Talwar -
2021 : A Practitioners Guide to Differentially Private Convex Optimization »
Ryan McKenna · Hristo Paskov · Kunal Talwar -
2023 Poster: Near-Optimal Algorithms for Private Online Optimization in the Realizable Regime »
Hilal Asi · Vitaly Feldman · Tomer Koren · Kunal Talwar -
2022 : Low-Communication Algorithms for Private Federated Data Analysis »
Kunal Talwar -
2022 Workshop: Theory and Practice of Differential Privacy »
Gautam Kamath · Audra McMillan -
2022 Poster: Accelerated, Optimal and Parallel: Some results on model-based stochastic optimization »
Karan Chadha · Gary Cheng · John Duchi -
2022 Poster: Optimal Algorithms for Mean Estimation under Local Differential Privacy »
Hilal Asi · Vitaly Feldman · Kunal Talwar -
2022 Oral: Optimal Algorithms for Mean Estimation under Local Differential Privacy »
Hilal Asi · Vitaly Feldman · Kunal Talwar -
2022 Spotlight: Accelerated, Optimal and Parallel: Some results on model-based stochastic optimization »
Karan Chadha · Gary Cheng · John Duchi -
2022 Poster: Private frequency estimation via projective geometry »
Vitaly Feldman · Jelani Nelson · Huy Nguyen · Kunal Talwar -
2022 Poster: Private optimization in the interpolation regime: faster rates and hardness results »
Hilal Asi · Karan Chadha · Gary Cheng · John Duchi -
2022 Spotlight: Private optimization in the interpolation regime: faster rates and hardness results »
Hilal Asi · Karan Chadha · Gary Cheng · John Duchi -
2022 Spotlight: Private frequency estimation via projective geometry »
Vitaly Feldman · Jelani Nelson · Huy Nguyen · Kunal Talwar -
2021 : Contributed Talks Session 2 »
Saeed Sharifi-Malvajerdi · Audra McMillan · Ryan McKenna -
2021 Poster: Private Adaptive Gradient Methods for Convex Optimization »
Hilal Asi · John Duchi · Alireza Fallah · Omid Javidbakht · Kunal Talwar -
2021 Poster: Lossless Compression of Efficient Private Local Randomizers »
Vitaly Feldman · Kunal Talwar -
2021 Poster: Private Stochastic Convex Optimization: Optimal Rates in L1 Geometry »
Hilal Asi · Vitaly Feldman · Tomer Koren · Kunal Talwar -
2021 Spotlight: Private Adaptive Gradient Methods for Convex Optimization »
Hilal Asi · John Duchi · Alireza Fallah · Omid Javidbakht · Kunal Talwar -
2021 Oral: Private Stochastic Convex Optimization: Optimal Rates in L1 Geometry »
Hilal Asi · Vitaly Feldman · Tomer Koren · Kunal Talwar -
2021 Spotlight: Lossless Compression of Efficient Private Local Randomizers »
Vitaly Feldman · Kunal Talwar -
2021 Poster: Characterizing Structural Regularities of Labeled Data in Overparameterized Models »
Ziheng Jiang · Chiyuan Zhang · Kunal Talwar · Michael Mozer -
2021 Oral: Characterizing Structural Regularities of Labeled Data in Overparameterized Models »
Ziheng Jiang · Chiyuan Zhang · Kunal Talwar · Michael Mozer -
2020 Poster: Understanding and Mitigating the Tradeoff between Robustness and Accuracy »
Aditi Raghunathan · Sang Michael Xie · Fanny Yang · John Duchi · Percy Liang -
2020 Poster: FormulaZero: Distributionally Robust Online Adaptation via Offline Population Synthesis »
Aman Sinha · Matthew O'Kelly · Hongrui Zheng · Rahul Mangharam · John Duchi · Russ Tedrake -
2019 Poster: The advantages of multiple classes for reducing overfitting from test set reuse »
Vitaly Feldman · Roy Frostig · Moritz Hardt -
2019 Oral: The advantages of multiple classes for reducing overfitting from test set reuse »
Vitaly Feldman · Roy Frostig · Moritz Hardt -
2017 Poster: Adaptive Sampling Probabilities for Non-Smooth Optimization »
Hongseok Namkoong · Aman Sinha · Steven Yadlowsky · John Duchi -
2017 Poster: “Convex Until Proven Guilty”: Dimension-Free Acceleration of Gradient Descent on Non-Convex Functions »
Yair Carmon · John Duchi · Oliver Hinder · Aaron Sidford -
2017 Talk: “Convex Until Proven Guilty”: Dimension-Free Acceleration of Gradient Descent on Non-Convex Functions »
Yair Carmon · John Duchi · Oliver Hinder · Aaron Sidford -
2017 Talk: Adaptive Sampling Probabilities for Non-Smooth Optimization »
Hongseok Namkoong · Aman Sinha · Steven Yadlowsky · John Duchi