Timezone: »
Exact Optimality in Communication-Privacy-Utility Tradeoffs
Berivan Isik · Wei-Ning Chen · Ayfer Ozgur · Tsachy Weissman · Albert No
Event URL: https://openreview.net/forum?id=TF2sP6bTUI »
We study the mean estimation problem under communication and local differential privacy constraints. While previous work has proposed order-optimal algorithms for the same problem (i.e., asymptotically optimal as we spend more bits), exact optimality (in the non-asymptotic setting) still has not been achieved. We take a step towards characterizing the exact-optimal approach in the presence of shared randomness and identify several necessary conditions for exact optimality. We prove that one of the necessary conditions is to utilize a rotationally symmetric shared random codebook. Based on this, we propose a randomization mechanism where the codebook is a randomly rotated simplex -- satisfying the necessary properties of the exact-optimal codebook. The proposed mechanism is based on a $k$-closest encoding which we prove to be exact-optimal for the randomly rotated simplex codebook.
We study the mean estimation problem under communication and local differential privacy constraints. While previous work has proposed order-optimal algorithms for the same problem (i.e., asymptotically optimal as we spend more bits), exact optimality (in the non-asymptotic setting) still has not been achieved. We take a step towards characterizing the exact-optimal approach in the presence of shared randomness and identify several necessary conditions for exact optimality. We prove that one of the necessary conditions is to utilize a rotationally symmetric shared random codebook. Based on this, we propose a randomization mechanism where the codebook is a randomly rotated simplex -- satisfying the necessary properties of the exact-optimal codebook. The proposed mechanism is based on a $k$-closest encoding which we prove to be exact-optimal for the randomly rotated simplex codebook.
Author Information
Berivan Isik (Stanford University)
Wei-Ning Chen (Stanford University)

Wei-Ning Chen is currently a Ph.D. student at Stanford EE under the support of Stanford Graduate Fellowship (SGF). His research interests broadly lie in information-theoretic and algorithmic aspects of data science. He adopt tools mainly from information theory, theoretical machine learning, and statistical inference, with a current focus on distributed inference, federated learning and differential privacy.
Ayfer Ozgur (Stanford University)
Tsachy Weissman (Stanford University)
Albert No (Hongik University)
More from the Same Authors
-
2023 : Federated Experiment Design under Distributed Differential Privacy »
Wei-Ning Chen · Graham Cormode · Akash Bharadwaj · Peter Romov · Ayfer Ozgur -
2023 : Privacy Amplification via Compression: Achieving the Optimal Privacy-Accuracy-Communication Trade-off in Distributed Mean Estimation »
Wei-Ning Chen · Dan Song · Ayfer Ozgur · Peter Kairouz -
2023 : Leveraging Side Information for Communication-Efficient Federated Learning »
Berivan Isik · Francesco Pase · Deniz Gunduz · Sanmi Koyejo · Tsachy Weissman · Michele Zorzi -
2023 : GPT-Zip: Deep Compression of Finetuned Large Language Models »
Berivan Isik · Hermann Kumbong · Wanyi Ning · Xiaozhe Yao · Sanmi Koyejo · Ce Zhang -
2023 : Local Differential Privacy with Entropic Wasserstein Distance »
Daria Reshetova · Wei-Ning Chen · Ayfer Ozgur -
2023 Workshop: Neural Compression: From Information Theory to Applications »
Berivan Isik · Yibo Yang · Daniel Severo · Karen Ullrich · Robert Bamler · Stephan Mandt -
2023 Workshop: Federated Learning and Analytics in Practice: Algorithms, Systems, Applications, and Opportunities »
Zheng Xu · Peter Kairouz · Bo Li · Tian Li · John Nguyen · Jianyu Wang · Shiqiang Wang · Ayfer Ozgur -
2022 Poster: The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning »
Wei-Ning Chen · Christopher Choquette Choo · Peter Kairouz · Ananda Suresh -
2022 Poster: Neural Tangent Kernel Analysis of Deep Narrow Neural Networks »
Jongmin Lee · Joo Young Choi · Ernest Ryu · Albert No -
2022 Poster: The Poisson Binomial Mechanism for Unbiased Federated Learning with Secure Aggregation »
Wei-Ning Chen · Ayfer Ozgur · Peter Kairouz -
2022 Spotlight: Neural Tangent Kernel Analysis of Deep Narrow Neural Networks »
Jongmin Lee · Joo Young Choi · Ernest Ryu · Albert No -
2022 Spotlight: The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning »
Wei-Ning Chen · Christopher Choquette Choo · Peter Kairouz · Ananda Suresh -
2022 Oral: The Poisson Binomial Mechanism for Unbiased Federated Learning with Secure Aggregation »
Wei-Ning Chen · Ayfer Ozgur · Peter Kairouz -
2021 Workshop: Information-Theoretic Methods for Rigorous, Responsible, and Reliable Machine Learning (ITR3) »
Ahmad Beirami · Flavio Calmon · Berivan Isik · Haewon Jeong · Matthew Nokleby · Cynthia Rush -
2021 Poster: WGAN with an Infinitely Wide Generator Has No Spurious Stationary Points »
Albert No · TaeHo Yoon · Sehyun Kwon · Ernest Ryu -
2021 Spotlight: WGAN with an Infinitely Wide Generator Has No Spurious Stationary Points »
Albert No · TaeHo Yoon · Sehyun Kwon · Ernest Ryu -
2021 Affinity Workshop: Women in Machine Learning (WiML) Un-Workshop »
Wenshuo Guo · Beliz Gokkaya · Arushi G K Majha · Vaidheeswaran Archana · Berivan Isik · Olivia Choudhury · Liyue Shen · Hadia Samil · Tatjana Chavdarova -
2019 Poster: Neural Joint Source-Channel Coding »
Kristy Choi · Kedar Tatwawadi · Aditya Grover · Tsachy Weissman · Stefano Ermon -
2019 Oral: Neural Joint Source-Channel Coding »
Kristy Choi · Kedar Tatwawadi · Aditya Grover · Tsachy Weissman · Stefano Ermon