Timezone: »
Unleashing the Power of Randomization in Auditing Differentially Private ML
Krishna Pillutla · Galen Andrew · Peter Kairouz · Hugh B McMahan · Alina Oprea · Sewoong Oh
Event URL: https://openreview.net/forum?id=8xHC7xKjlZ »
We present a rigorous methodology for auditing differentially private machine learning algorithms by adding multiple carefully designed examples called canaries. We take a first principles approach based on three key components. First, we introduce Lifted Differential Privacy (Lifted DP) that expands the definition of differential privacy to handle randomized datasets. This gives us the freedom to design randomized canaries. Second, we audit Lifted DP by trying to distinguish between the model trained with $K$ canaries versus $K-1$ canaries in the dataset, leaving one canary out. By drawing the canaries i.i.d., Lifted DP can leverage the symmetry in the design and reuse each privately trained model to run multiple statistical tests, one for each canary. Third, we introduce novel confidence intervals that take advantage of the multiple test statistics by adapting to the empirical higher-order correlations. Together, this new recipe demonstrates significant improvements in sample complexity, both theoretically and empirically, using synthetic and real data. Further, recent advances in designing stronger canaries can be readily incorporated into the new framework.
We present a rigorous methodology for auditing differentially private machine learning algorithms by adding multiple carefully designed examples called canaries. We take a first principles approach based on three key components. First, we introduce Lifted Differential Privacy (Lifted DP) that expands the definition of differential privacy to handle randomized datasets. This gives us the freedom to design randomized canaries. Second, we audit Lifted DP by trying to distinguish between the model trained with $K$ canaries versus $K-1$ canaries in the dataset, leaving one canary out. By drawing the canaries i.i.d., Lifted DP can leverage the symmetry in the design and reuse each privately trained model to run multiple statistical tests, one for each canary. Third, we introduce novel confidence intervals that take advantage of the multiple test statistics by adapting to the empirical higher-order correlations. Together, this new recipe demonstrates significant improvements in sample complexity, both theoretically and empirically, using synthetic and real data. Further, recent advances in designing stronger canaries can be readily incorporated into the new framework.
Author Information
Krishna Pillutla (Google)
Galen Andrew (Google)
Peter Kairouz (Google)
Hugh B McMahan (Google)
Alina Oprea (Northeastern University)
Sewoong Oh (University of Washington)
More from the Same Authors
-
2021 : Neural Network-based Estimation of the MMSE »
Mario Diaz · Peter Kairouz · Lalitha Sankar -
2021 : The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation »
Peter Kairouz · Ziyu Liu · Thomas Steinke -
2021 : Robust and Differentially Private Covariance Estimation »
Logan Gnanapragasam · Jonathan Hayase · Sewoong Oh -
2021 : Membership Inference Attacks are More Powerful Against Updated Models »
Matthew Jagielski · Stanley Wu · Alina Oprea · Jonathan Ullman · Roxana Geambasu -
2021 : On the Renyi Differential Privacy of the Shuffle Model »
Antonious Girgis · Deepesh Data · Suhas Diggavi · Ananda Theertha Suresh · Peter Kairouz -
2021 : Practical and Private (Deep) Learning without Sampling orShuffling »
Peter Kairouz · Hugh B McMahan · Shuang Song · Om Dipakbhai Thakkar · Abhradeep Guha Thakurta · Zheng Xu -
2021 : Industrial Booth (Google) »
Zheng Xu · Peter Kairouz -
2022 : Fair Universal Representations using Adversarial Models »
Monica Welfert · Peter Kairouz · Jiachun Liao · Chong Huang · Lalitha Sankar -
2023 : TMI! Finetuned Models Spill Secrets from Pretraining »
John Abascal · Stanley Wu · Alina Oprea · Jonathan Ullman -
2023 : Privacy Amplification via Compression: Achieving the Optimal Privacy-Accuracy-Communication Trade-off in Distributed Mean Estimation »
Wei-Ning Chen · Dan Song · Ayfer Ozgur · Peter Kairouz -
2023 : Federated Heavy Hitter Recovery under Linear Sketching »
Adria Gascon · Peter Kairouz · Ziteng Sun · Ananda Suresh -
2023 : Can Public Large Language Models Help Private Cross-device Federated Learning? »
Boxin Wang · Yibo J. Zhang · Yuan Cao · Bo Li · Hugh B McMahan · Sewoong Oh · Zheng Xu · Manzil Zaheer -
2023 : Can Public Large Language Models Help Private Cross-device Federated Learning? »
Boxin Wang · Yibo J. Zhang · Yuan Cao · Bo Li · Hugh B McMahan · Sewoong Oh · Zheng Xu · Manzil Zaheer -
2023 : Learning with Primal-Dual Spectral Risk Measures: a Fast Incremental Algorithm »
Ronak Mehta · Vincent Roulet · Krishna Pillutla · Zaid Harchaoui -
2023 : Panel Discussion »
Peter Kairouz · Song Han · Kamalika Chaudhuri · Florian Tramer -
2023 Workshop: Federated Learning and Analytics in Practice: Algorithms, Systems, Applications, and Opportunities »
Zheng Xu · Peter Kairouz · Bo Li · Tian Li · John Nguyen · Jianyu Wang · Shiqiang Wang · Ayfer Ozgur -
2023 Poster: Why Is Public Pretraining Necessary for Private Model Training? »
Arun Ganesh · Mahdi Haghifam · Milad Nasresfahani · Sewoong Oh · Thomas Steinke · Om Thakkar · Abhradeep Guha Thakurta · Lun Wang -
2023 Oral: Multi-Epoch Matrix Factorization Mechanisms for Private Machine Learning »
Christopher Choquette-Choo · Hugh B McMahan · J K Rush · Abhradeep Guha Thakurta -
2023 Poster: Federated Heavy Hitter Recovery under Linear Sketching »
Adria Gascon · Peter Kairouz · Ziteng Sun · Ananda Suresh -
2023 Poster: CRISP: Curriculum based Sequential neural decoders for Polar code family »
S Ashwin Hebbar · Viraj Nadkarni · Ashok Vardhan Makkuva · Suma Bhat · Sewoong Oh · Pramod Viswanath -
2023 Poster: Private Federated Learning with Autotuned Compression »
Enayat Ullah · Christopher Choquette-Choo · Peter Kairouz · Sewoong Oh -
2023 Poster: Algorithms for bounding contribution for histogram estimation under user-level privacy »
Yuhan Liu · Ananda Suresh · Wennan Zhu · Peter Kairouz · Marco Gruteser -
2023 Poster: Multi-Epoch Matrix Factorization Mechanisms for Private Machine Learning »
Christopher Choquette-Choo · Hugh B McMahan · J K Rush · Abhradeep Guha Thakurta -
2022 Poster: The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning »
Wei-Ning Chen · Christopher Choquette Choo · Peter Kairouz · Ananda Suresh -
2022 Poster: The Poisson Binomial Mechanism for Unbiased Federated Learning with Secure Aggregation »
Wei-Ning Chen · Ayfer Ozgur · Peter Kairouz -
2022 Spotlight: The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning »
Wei-Ning Chen · Christopher Choquette Choo · Peter Kairouz · Ananda Suresh -
2022 Oral: The Poisson Binomial Mechanism for Unbiased Federated Learning with Secure Aggregation »
Wei-Ning Chen · Ayfer Ozgur · Peter Kairouz -
2021 : Industrial Panel »
Nathalie Baracaldo · Shiqiang Wang · Peter Kairouz · Zheng Xu · Kshitiz Malik · Tao Zhang -
2021 : Contributed Talks Session 1 »
Marika Swanberg · Samuel Haney · Peter Kairouz -
2021 Poster: Practical and Private (Deep) Learning Without Sampling or Shuffling »
Peter Kairouz · Brendan McMahan · Shuang Song · Om Dipakbhai Thakkar · Abhradeep Guha Thakurta · Zheng Xu -
2021 Poster: The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation »
Peter Kairouz · Ziyu Liu · Thomas Steinke -
2021 Spotlight: The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation »
Peter Kairouz · Ziyu Liu · Thomas Steinke -
2021 Spotlight: Practical and Private (Deep) Learning Without Sampling or Shuffling »
Peter Kairouz · Brendan McMahan · Shuang Song · Om Dipakbhai Thakkar · Abhradeep Guha Thakurta · Zheng Xu -
2020 Poster: Context Aware Local Differential Privacy »
Jayadev Acharya · Kallista Bonawitz · Peter Kairouz · Daniel Ramage · Ziteng Sun -
2019 Poster: Breaking the gridlock in Mixture-of-Experts: Consistent and Efficient Algorithms »
Ashok Vardhan Makkuva · Pramod Viswanath · Sreeram Kannan · Sewoong Oh -
2019 Oral: Breaking the gridlock in Mixture-of-Experts: Consistent and Efficient Algorithms »
Ashok Vardhan Makkuva · Pramod Viswanath · Sreeram Kannan · Sewoong Oh -
2019 Poster: Rate Distortion For Model Compression:From Theory To Practice »
Weihao Gao · Yu-Han Liu · Chong Wang · Sewoong Oh -
2019 Oral: Rate Distortion For Model Compression:From Theory To Practice »
Weihao Gao · Yu-Han Liu · Chong Wang · Sewoong Oh