Timezone: »
Data augmentation (DA) is a crucial technique for enhancing the sample efficiency of visual reinforcement learning (RL) algorithms. Notably, employing simple observation transformations alone can yield outstanding performance without extra auxiliary representation tasks or pre-trained encoders. However, it remains unclear which attributes of DA account for its effectiveness in achieving sample-efficient visual RL. To investigate this issue and further explore the potential of DA, this work conducts comprehensive experiments to assess the impact of DA's attributes on its efficacy and provides the following insights and improvements: (1) For individual DA operations, we reveal that both ample spatial diversity and slight hardness are indispensable. Building on this finding, we introduce Random PadResize (Rand PR), a new DA operation that offers abundant spatial diversity with minimal hardness. (2) For multi-type DA fusion schemes, the increased DA hardness and unstable data distribution result in the current fusion schemes being unable to achieve higher sample efficiency than their corresponding individual operations. Taking the non-stationary nature of RL into account, we propose a RL-tailored multi-type DA fusion scheme called Cycling Augmentation (CycAug), which performs periodic cycles of different DA operations to increase type diversity while maintaining data distribution consistency. Extensive evaluations on the DeepMind Control suite and CARLA driving simulator demonstrate that our methods achieve superior sample efficiency compared with the prior state-of-the-art methods.
Author Information
Guozheng Ma (Tsinghua University)
Haoyu Wang (Tsinghua University)
Lu Li (Tsinghua university)
Zilin Wang (Tsinghua University)
Zhen Wang (University of Sydney)
Li Shen (JD Explore Academy)
Xueqian Wang (Tsinghua University, Tsinghua University)
Dacheng Tao
More from the Same Authors
-
2022 : Pre-Trained Image Encoder for Generalizable Visual Reinforcement Learning »
Zhecheng Yuan · Zhecheng Yuan · Zhengrong Xue · Zhengrong Xue · Bo Yuan · Bo Yuan · Xueqian Wang · Xueqian Wang · Yi Wu · Yi Wu · Yang Gao · Yang Gao · Huazhe Xu · Huazhe Xu -
2023 Oral: Dynamic Regularized Sharpness Aware Minimization in Federated Learning: Approaching Global Consistency and Smooth Landscape »
Yan Sun · Li Shen · Shixiang Chen · Liang Ding · Dacheng Tao -
2023 Oral: Tilted Sparse Additive Models »
Yingjie Wang · Hong Chen · Weifeng Liu · Fengxiang He · Tieliang Gong · YouCheng Fu · Dacheng Tao -
2023 Poster: Structured Cooperative Learning with Graphical Model Priors »
Shuangtong Li · Tianyi Zhou · Xinmei Tian · Dacheng Tao -
2023 Poster: Tilted Sparse Additive Models »
Yingjie Wang · Hong Chen · Weifeng Liu · Fengxiang He · Tieliang Gong · YouCheng Fu · Dacheng Tao -
2023 Poster: Are Large Kernels Better Teachers than Transformers for ConvNets? »
Tianjin Huang · Lu Yin · Zhenyu Zhang · Li Shen · Meng Fang · Mykola Pechenizkiy · Zhangyang “Atlas” Wang · Shiwei Liu -
2023 Poster: Decentralized SGD and Average-direction SAM are Asymptotically Equivalent »
Tongtian Zhu · Fengxiang He · Kaixuan Chen · Mingli Song · Dacheng Tao -
2023 Poster: Improving the Model Consistency of Decentralized Federated Learning »
Yifan Shi · Li Shen · Kang Wei · Yan Sun · Bo Yuan · Xueqian Wang · Dacheng Tao -
2023 Poster: Dynamic Regularized Sharpness Aware Minimization in Federated Learning: Approaching Global Consistency and Smooth Landscape »
Yan Sun · Li Shen · Shixiang Chen · Liang Ding · Dacheng Tao -
2023 Poster: Learning to Learn from APIs: Black-Box Data-Free Meta-Learning »
Zixuan Hu · Li Shen · Zhenyi Wang · Baoyuan Wu · Chun Yuan · Dacheng Tao -
2023 Poster: CoCo: A Coupled Contrastive Framework for Unsupervised Domain Adaptive Graph Classification »
Nan Yin · Li Shen · Mengzhu Wang · Long Lan · Zeyu Ma · Chong Chen · Xian-Sheng Hua · Xiao Luo -
2022 : Paper 12: SafeRL-Kit: Evaluating Efficient Reinforcement Learning Methods for Safe Autonomous Driving »
· Li Shen · Bo Yuan · Xueqian Wang -
2022 Poster: Identity-Disentangled Adversarial Augmentation for Self-supervised Learning »
Kaiwen Yang · Tianyi Zhou · Xinmei Tian · Dacheng Tao -
2022 Spotlight: Identity-Disentangled Adversarial Augmentation for Self-supervised Learning »
Kaiwen Yang · Tianyi Zhou · Xinmei Tian · Dacheng Tao -
2022 Poster: Understanding Robust Overfitting of Adversarial Training and Beyond »
Chaojian Yu · Bo Han · Li Shen · Jun Yu · Chen Gong · Mingming Gong · Tongliang Liu -
2022 Poster: DisPFL: Towards Communication-Efficient Personalized Federated Learning via Decentralized Sparse Training »
Rong Dai · Li Shen · Fengxiang He · Xinmei Tian · Dacheng Tao -
2022 Spotlight: Understanding Robust Overfitting of Adversarial Training and Beyond »
Chaojian Yu · Bo Han · Li Shen · Jun Yu · Chen Gong · Mingming Gong · Tongliang Liu -
2022 Spotlight: DisPFL: Towards Communication-Efficient Personalized Federated Learning via Decentralized Sparse Training »
Rong Dai · Li Shen · Fengxiang He · Xinmei Tian · Dacheng Tao -
2022 Poster: Improving Task-free Continual Learning by Distributionally Robust Memory Evolution »
Zhenyi Wang · Li Shen · Le Fang · Qiuling Suo · Tiehang Duan · Mingchen Gao -
2022 Poster: Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning »
Chang Liu · Chenfei Lou · Runzhong Wang · Alan Yuhan Xi · Li Shen · Junchi Yan -
2022 Poster: Topology-aware Generalization of Decentralized SGD »
Tongtian Zhu · Fengxiang He · Lan Zhang · Zhengyang Niu · Mingli Song · Dacheng Tao -
2022 Spotlight: Topology-aware Generalization of Decentralized SGD »
Tongtian Zhu · Fengxiang He · Lan Zhang · Zhengyang Niu · Mingli Song · Dacheng Tao -
2022 Spotlight: Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning »
Chang Liu · Chenfei Lou · Runzhong Wang · Alan Yuhan Xi · Li Shen · Junchi Yan -
2022 Spotlight: Improving Task-free Continual Learning by Distributionally Robust Memory Evolution »
Zhenyi Wang · Li Shen · Le Fang · Qiuling Suo · Tiehang Duan · Mingchen Gao -
2020 Poster: Deep Streaming Label Learning »
Zhen Wang · Liu Liu · Dacheng Tao -
2020 Poster: Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks »
Zhishuai Guo · Mingrui Liu · Zhuoning Yuan · Li Shen · Wei Liu · Tianbao Yang -
2018 Poster: An Algorithmic Framework of Variable Metric Over-Relaxed Hybrid Proximal Extra-Gradient Method »
Li Shen · Peng Sun · Yitong Wang · Wei Liu · Tong Zhang -
2018 Oral: An Algorithmic Framework of Variable Metric Over-Relaxed Hybrid Proximal Extra-Gradient Method »
Li Shen · Peng Sun · Yitong Wang · Wei Liu · Tong Zhang -
2017 Poster: Beyond Filters: Compact Feature Map for Portable Deep Model »
Yunhe Wang · Chang Xu · Chao Xu · Dacheng Tao -
2017 Talk: Beyond Filters: Compact Feature Map for Portable Deep Model »
Yunhe Wang · Chang Xu · Chao Xu · Dacheng Tao -
2017 Poster: Algorithmic Stability and Hypothesis Complexity »
Tongliang Liu · Gábor Lugosi · Gergely Neu · Dacheng Tao -
2017 Talk: Algorithmic Stability and Hypothesis Complexity »
Tongliang Liu · Gábor Lugosi · Gergely Neu · Dacheng Tao -
2017 Poster: GSOS: Gauss-Seidel Operator Splitting Algorithm for Multi-Term Nonsmooth Convex Composite Optimization »
Li Shen · Wei Liu · Ganzhao Yuan · Shiqian Ma -
2017 Talk: GSOS: Gauss-Seidel Operator Splitting Algorithm for Multi-Term Nonsmooth Convex Composite Optimization »
Li Shen · Wei Liu · Ganzhao Yuan · Shiqian Ma