Timezone: »
Numerous benchmarks for Few-Shot Learning have been proposed in the last decade. However all of these benchmarks focus on performance averaged over many tasks, and the question of how to reliably evaluate and tune models trained for individual tasks in this regime has not been addressed. This paper presents the first investigation into task-level evaluation---a fundamental step when deploying a model. We measure the accuracy of performance estimators in the few-shot setting, consider strategies for model selection, and examine the reasons for the failure of evaluators usually thought of as being robust. We conclude that cross-validation with a low number of folds is the best choice for directly estimating the performance of a model, whereas using bootstrapping or cross validation with a large number of folds is better for model selection purposes. Overall, we find that existing benchmarks for few-shot learning are not designed in such a way that one can get a reliable picture of how effectively methods can be used on individual tasks.
Author Information
Luísa Shimabucoro (Universidade de São Paulo)
Timothy Hospedales (Samsung AI Centre / University of Edinburgh)
Henry Gouk (University of Edinburgh)
More from the Same Authors
-
2022 : Attacking Adversarial Defences by Smoothing the Loss Landscape »
Panagiotis Eustratiadis · Henry Gouk · Da Li · Timothy Hospedales -
2022 : HyperInvariances: Amortizing Invariance Learning »
Ruchika Chavhan · Henry Gouk · Jan Stuehmer · Timothy Hospedales -
2022 : Feed-Forward Source-Free Latent Domain Adaptation via Cross-Attention »
Ondrej Bohdal · Da Li · Xu Hu · Timothy Hospedales -
2023 : Impact of Noise on Calibration and Generalisation of Neural Networks »
Martin Ferianc · Ondrej Bohdal · Timothy Hospedales · Miguel Rodrigues -
2023 : Why Do Self-Supervised Models Transfer? On Data Augmentation and Feature Properties »
Linus Ericsson · Henry Gouk · Timothy Hospedales -
2022 Poster: Loss Function Learning for Domain Generalization by Implicit Gradient »
Boyan Gao · Henry Gouk · Yongxin Yang · Timothy Hospedales -
2022 Poster: Fisher SAM: Information Geometry and Sharpness Aware Minimisation »
Minyoung Kim · Da Li · Xu Hu · Timothy Hospedales -
2022 Spotlight: Fisher SAM: Information Geometry and Sharpness Aware Minimisation »
Minyoung Kim · Da Li · Xu Hu · Timothy Hospedales -
2022 Spotlight: Loss Function Learning for Domain Generalization by Implicit Gradient »
Boyan Gao · Henry Gouk · Yongxin Yang · Timothy Hospedales -
2021 Poster: Weight-covariance alignment for adversarially robust neural networks »
Panagiotis Eustratiadis · Henry Gouk · Da Li · Timothy Hospedales -
2021 Spotlight: Weight-covariance alignment for adversarially robust neural networks »
Panagiotis Eustratiadis · Henry Gouk · Da Li · Timothy Hospedales -
2019 Poster: Analogies Explained: Towards Understanding Word Embeddings »
Carl Allen · Timothy Hospedales -
2019 Oral: Analogies Explained: Towards Understanding Word Embeddings »
Carl Allen · Timothy Hospedales -
2019 Poster: Feature-Critic Networks for Heterogeneous Domain Generalization »
Yiying Li · Yongxin Yang · Wei Zhou · Timothy Hospedales -
2019 Oral: Feature-Critic Networks for Heterogeneous Domain Generalization »
Yiying Li · Yongxin Yang · Wei Zhou · Timothy Hospedales