Timezone: »
Despite powering sensitive systems like autonomous vehicles, object detection remains fairly brittle in part due to annotation errors that plague most real-world training datasets. We propose ObjectLab, a straightforward algorithm to detect diverse errors in object detection labels, including: overlooked bounding boxes, badly located boxes, and incorrect class label assignments. ObjectLab utilizes any trained object detection model to score the label quality of each image, such that mislabeled images can be prioritized for label review/correction. Properly handling the erroneous data enables training a better version of the same object detection model, without any change in existing modeling code. Benchmarks on SYNTHIA and naturally-occurring annotation errors in COCO reveal that across different object detection models/datasets, ObjectLab consistently detects error with much better precision/recall compared to other label quality scores.
Author Information
Ulyana Tkachenko (Cleanlab)
Aditya Thyagarajan (CleanLab)
Jonas Mueller (Cleanlab)
More from the Same Authors
-
2021 : Multimodal AutoML on Structured Tables with Text Fields »
Xingjian Shi · Jonas Mueller · Nick Erickson · Mu Li · Alex Smola -
2021 : Continuous Doubly Constrained Batch Reinforcement Learning »
Rasool Fakoor · Jonas Mueller · Kavosh Asadi · Pratik Chaudhari · Alex Smola -
2022 : Adaptive Interest for Emphatic Reinforcement Learning »
Martin Klissarov · Rasool Fakoor · Jonas Mueller · Kavosh Asadi · Taesup Kim · Alex Smola -
2022 : Back to the Basics: Revisiting Out-of-Distribution Detection Baselines »
Johnson Kuan · Jonas Mueller -
2023 : How to Cope with Gradual Data Drift? »
Rasool Fakoor · Jonas Mueller · Zachary Lipton · Pratik Chaudhari · Alex Smola -
2023 : Detecting Dataset Drift and Non-IID Sampling via k-Nearest Neighbors »
Jesse Cummings · Jonas Mueller · ElĂas Snorrason -
2023 : Estimating label quality and errors in semantic segmentation data via any model »
Vedang Lad · Jonas Mueller -
2023 : Detecting Errors in Numerical Data via any Regression Model »
Hang Zhou · Jonas Mueller · Mayank Kumar · Jane-Ling Wang · Jing Lei -
2022 : Model-Agnostic Label Quality Scoring to Detect Real-World Label Errors »
Jonas Mueller -
2021 : Q&A Contributed Talk »
Jonas Mueller -
2021 : Contributed Talk: Multimodal AutoML on Structured Tables with Text Fields »
Jonas Mueller -
2021 Poster: Deep Learning for Functional Data Analysis with Adaptive Basis Layers »
Junwen Yao · Jonas Mueller · Jane-Ling Wang -
2021 Spotlight: Deep Learning for Functional Data Analysis with Adaptive Basis Layers »
Junwen Yao · Jonas Mueller · Jane-Ling Wang -
2020 : 1.2 AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data »
Jonas Mueller -
2020 Poster: Educating Text Autoencoders: Latent Representation Guidance via Denoising »
Tianxiao Shen · Jonas Mueller · Regina Barzilay · Tommi Jaakkola