Timezone: »
Large amounts of tabular data remain underutilized due to privacy, data quality, and data sharing limitations. While training a generative model producing synthetic data resembling the original distribution addresses some of these issues, most applications require additional constraints from the generated data. Existing synthetic data approaches are limited as they typically only handle specific constraints, e.g., differential privacy (DP) or increased fairness, and lack an accessible interface for declaring general specifications. In this work, we introduce ProgSyn, the first programmable synthetic tabular data generation algorithm that allows for comprehensive customization over the generated data. To ensure high data quality while adhering to custom specifications, ProgSyn pre-trains a generative model on the original dataset and fine-tunes it on a differentiable loss automatically derived from the provided specifications. These can be programmatically declared using statistical and logical expressions, supporting a wide range of requirements (e.g., DP or fairness, among others). We conduct an extensive experimental evaluation of ProgSyn on a number of constraints, achieving a new state-of-the-art on some, while remaining general. For instance, at the same fairness level we achieve 2.3% higher downstream accuracy than the state-of-the-art in fair synthetic data generation on the Adult dataset. Overall, ProgSyn provides a versatile and accessible framework for generating constrained synthetic tabular data, allowing for specifications that generalize beyond the capabilities of prior work.
Author Information
Mark Vero (ETH Zurich)
Mislav Balunovic (Swiss Federal Institute of Technology)
Martin Vechev (ETH Zurich)
More from the Same Authors
-
2021 : Automated Discovery of Adaptive Attacks on Adversarial Defenses »
Chengyuan Yao · Pavol Bielik · Petar Tsankov · Martin Vechev -
2023 : Incentivizing Honesty among Competitors in Collaborative Learning »
Florian Dorner · Nikola Konstantinov · Georgi Pashaliev · Martin Vechev -
2023 : Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning »
Kostadin Garov · Dimitar I. Dimitrov · Nikola Jovanović · Martin Vechev -
2023 : Large Language Models are Zero-Shot Multi-Tool Users »
Luca Beurer-Kellner · Marc Fischer · Martin Vechev -
2023 : LMQL Chat: Scripted Chatbot Development »
Luca Beurer-Kellner · Marc Fischer · Martin Vechev -
2023 : Large Language Models for Code: Security Hardening and Adversarial Testing »
Jingxuan He · Martin Vechev -
2023 : Connecting Certified and Adversarial Training »
Yuhao Mao · Mark Müller · Marc Fischer · Martin Vechev -
2023 : Understanding Certified Training with Interval Bound Propagation »
Yuhao Mao · Mark Müller · Marc Fischer · Martin Vechev -
2023 Workshop: 2nd Workshop on Formal Verification of Machine Learning »
Mark Müller · Brendon G. Anderson · Leslie Rice · Zhouxing Shi · Shubham Ugare · Huan Zhang · Martin Vechev · Zico Kolter · Somayeh Sojoudi · Cho-Jui Hsieh -
2023 Poster: FARE: Provably Fair Representation Learning with Practical Certificates »
Nikola Jovanović · Mislav Balunovic · Dimitar I. Dimitrov · Martin Vechev -
2023 Poster: TabLeak: Tabular Data Leakage in Federated Learning »
Mark Vero · Mislav Balunovic · Dimitar I. Dimitrov · Martin Vechev -
2022 Workshop: Workshop on Formal Verification of Machine Learning »
Huan Zhang · Leslie Rice · Kaidi Xu · aditi raghunathan · Wan-Yi Lin · Cho-Jui Hsieh · Clark Barrett · Martin Vechev · Zico Kolter -
2022 Poster: On Distribution Shift in Learning-based Bug Detectors »
Jingxuan He · Luca Beurer-Kellner · Martin Vechev -
2022 Spotlight: On Distribution Shift in Learning-based Bug Detectors »
Jingxuan He · Luca Beurer-Kellner · Martin Vechev -
2021 Poster: TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer »
Berkay Berabi · Jingxuan He · Veselin Raychev · Martin Vechev -
2021 Poster: Scalable Certified Segmentation via Randomized Smoothing »
Marc Fischer · Maximilian Baader · Martin Vechev -
2021 Spotlight: TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer »
Berkay Berabi · Jingxuan He · Veselin Raychev · Martin Vechev -
2021 Spotlight: Scalable Certified Segmentation via Randomized Smoothing »
Marc Fischer · Maximilian Baader · Martin Vechev -
2021 Poster: PODS: Policy Optimization via Differentiable Simulation »
Miguel Angel Zamora Mora · Momchil Peychev · Sehoon Ha · Martin Vechev · Stelian Coros -
2021 Spotlight: PODS: Policy Optimization via Differentiable Simulation »
Miguel Angel Zamora Mora · Momchil Peychev · Sehoon Ha · Martin Vechev · Stelian Coros -
2020 Poster: Adversarial Robustness for Code »
Pavol Bielik · Martin Vechev -
2020 Poster: Adversarial Attacks on Probabilistic Autoregressive Forecasting Models »
Raphaël Dang-Nhu · Gagandeep Singh · Pavol Bielik · Martin Vechev -
2019 Poster: DL2: Training and Querying Neural Networks with Logic »
Marc Fischer · Mislav Balunovic · Dana Drachsler-Cohen · Timon Gehr · Ce Zhang · Martin Vechev -
2019 Oral: DL2: Training and Querying Neural Networks with Logic »
Marc Fischer · Mislav Balunovic · Dana Drachsler-Cohen · Timon Gehr · Ce Zhang · Martin Vechev -
2018 Poster: Training Neural Machines with Trace-Based Supervision »
Matthew Mirman · Dimitar Dimitrov · Pavle Djordjevic · Timon Gehr · Martin Vechev -
2018 Oral: Training Neural Machines with Trace-Based Supervision »
Matthew Mirman · Dimitar Dimitrov · Pavle Djordjevic · Timon Gehr · Martin Vechev -
2018 Poster: Differentiable Abstract Interpretation for Provably Robust Neural Networks »
Matthew Mirman · Timon Gehr · Martin Vechev -
2018 Oral: Differentiable Abstract Interpretation for Provably Robust Neural Networks »
Matthew Mirman · Timon Gehr · Martin Vechev