Timezone: »
Counterfactual reasoning, a cognitive ability possessed by humans, is being actively studied for incorporation into machine learning systems. In the causal modelling approach to counterfactuals, Judea Pearl's theory remains the most influential and dominant. However, being thoroughly non-backtracking, the counterfactual probability distributions defined by Pearl can be hard to learn by non-parametric models, even when the causal structure is fully given. A big challenge is that non-backtracking counterfactuals can easily step outside of the support of the training data, the inference of which becomes highly unreliable with the current machine learning models. To mitigate this issue, we propose an alternative theory of counterfactuals, namely, natural counterfactuals. This theory is concerned with counterfactuals within the support of the data distribution, and defines in a principled way a different kind of counterfactual that backtracks if (but only if) necessary. To demonstrate potential applications of the theory and illustrate the advantages of natural counterfactuals, we conduct a case study of counterfactual generation and discuss empirical observations that lend support to our approach.
Author Information
Guangyuan Hao (MBUZAI and CUHK)
Jiji Zhang (CUHK)
Hao Wang (Rutgers University)
Kun Zhang (Carnegie Mellon University)
Related Events (a corresponding poster, oral, or spotlight)
-
2023 : Natural Counterfactuals With Necessary Backtracking »
Sun. Jul 30th 12:40 -- 12:50 AM Room
More from the Same Authors
-
2021 : Optimal transport for causal discovery »
Ruibo Tu · Kun Zhang · Hedvig Kjellström · Cheng Zhang -
2022 : Causal Balancing for Domain Generalization »
Xinyi Wang · Michael Saxon · Jiachen Li · Hongyang Zhang · Kun Zhang · William Wang -
2023 : Counterfactual Generation with Identifiability Guarantees »
Hanqi Yan · Lingjing Kong · Lin Gui · Yuejie Chi · Eric Xing · Yulan He · Kun Zhang -
2023 : Identification of Nonlinear Latent Hierarchical Causal Models »
Lingjing Kong · Biwei Huang · Feng Xie · Eric Xing · Yuejie Chi · Kun Zhang -
2023 : Advancing Counterfactual Inference through Quantile Regression »
Shaoan Xie · Biwei Huang · Bin Gu · Tongliang Liu · Kun Zhang -
2023 Poster: Identifiability of Label Noise Transition Matrix »
Yang Liu · Hao Cheng · Kun Zhang -
2023 Poster: Taxonomy-Structured Domain Adaptation »
Tianyi Liu · Zihao Xu · Hao He · Guangyuan Hao · Guang-He Lee · Hao Wang -
2023 Poster: Causal Discovery with Latent Confounders Based on Higher-Order Cumulants »
Ruichu Cai · Zhiyi Huang · Wei Chen · Zhifeng Hao · Kun Zhang -
2023 Poster: Feature Expansion for Graph Neural Networks »
Jiaqi Sun · Lin Zhang · Guangyi Chen · Peng XU · Kun Zhang · Yujiu Yang -
2023 Poster: Model Transferability with Responsive Decision Subjects »
Yatong Chen · Zeyu Tang · Kun Zhang · Yang Liu -
2023 Poster: Evolving Semantic Prototype Improves Generative Zero-Shot Learning »
Shiming Chen · Wenjin Hou · Ziming Hong · Xiaohan Ding · Yibing Song · Xinge You · Tongliang Liu · Kun Zhang -
2023 Poster: Which is Better for Learning with Noisy Labels: The Semi-supervised Method or Modeling Label Noise? »
Yu Yao · Mingming Gong · Yuxuan Du · Jun Yu · Bo Han · Kun Zhang · Tongliang Liu -
2022 : Model Transferability With Responsive Decision Subjects »
Yang Liu · Yatong Chen · Zeyu Tang · Kun Zhang -
2022 Poster: Identification of Linear Non-Gaussian Latent Hierarchical Structure »
Feng Xie · Biwei Huang · Zhengming Chen · Yangbo He · zhi geng · Kun Zhang -
2022 Poster: Action-Sufficient State Representation Learning for Control with Structural Constraints »
Biwei Huang · Chaochao Lu · Liu Leqi · Jose Miguel Hernandez-Lobato · Clark Glymour · Bernhard Schölkopf · Kun Zhang -
2022 Spotlight: Action-Sufficient State Representation Learning for Control with Structural Constraints »
Biwei Huang · Chaochao Lu · Liu Leqi · Jose Miguel Hernandez-Lobato · Clark Glymour · Bernhard Schölkopf · Kun Zhang -
2022 Spotlight: Identification of Linear Non-Gaussian Latent Hierarchical Structure »
Feng Xie · Biwei Huang · Zhengming Chen · Yangbo He · zhi geng · Kun Zhang -
2022 Poster: Partial disentanglement for domain adaptation »
Lingjing Kong · Shaoan Xie · Weiran Yao · Yujia Zheng · Guangyi Chen · Petar Stojanov · Victor Akinwande · Kun Zhang -
2022 Spotlight: Partial disentanglement for domain adaptation »
Lingjing Kong · Shaoan Xie · Weiran Yao · Yujia Zheng · Guangyi Chen · Petar Stojanov · Victor Akinwande · Kun Zhang -
2020 Poster: Label-Noise Robust Domain Adaptation »
Xiyu Yu · Tongliang Liu · Mingming Gong · Kun Zhang · Kayhan Batmanghelich · Dacheng Tao -
2020 Poster: LTF: A Label Transformation Framework for Correcting Label Shift »
Jiaxian Guo · Mingming Gong · Tongliang Liu · Kun Zhang · Dacheng Tao -
2020 Poster: Characterizing Distribution Equivalence and Structure Learning for Cyclic and Acyclic Directed Graphs »
AmirEmad Ghassami · Alan Yang · Negar Kiyavash · Kun Zhang -
2019 Poster: Causal Discovery and Forecasting in Nonstationary Environments with State-Space Models »
Biwei Huang · Kun Zhang · Mingming Gong · Clark Glymour -
2019 Oral: Causal Discovery and Forecasting in Nonstationary Environments with State-Space Models »
Biwei Huang · Kun Zhang · Mingming Gong · Clark Glymour -
2019 Poster: On Learning Invariant Representations for Domain Adaptation »
Han Zhao · Remi Tachet des Combes · Kun Zhang · Geoff Gordon -
2019 Oral: On Learning Invariant Representations for Domain Adaptation »
Han Zhao · Remi Tachet des Combes · Kun Zhang · Geoff Gordon