Timezone: »
Principal component regression (PCR) is a popular technique for fixed-design error-in-variables regression, a generalization of the linear regression setting in which the observed covariates are corrupted with random noise. We provide the first time-uniform finite sample guarantees for online (regularized) PCR whenever data is collected adaptively. Since the proof techniques for PCR in the fixed design setting do not readily extend to the online setting, our results rely on adapting tools from modern martingale concentration to the error-in-variables setting. As an application of our bounds, we provide a framework for counterfactual estimation of unit-specific treatment effects in panel data settings when interventions are assigned adaptively. Our framework may be thought of as a generalization of the synthetic interventions framework where data is collected via an adaptive intervention assignment policy.
Author Information
Anish Agarwal (Amazon)
Keegan Harris (Carnegie Mellon University)
Justin Whitehouse (Computer Science Department, Carnegie Mellon University)
Steven Wu (Carnegie Mellon University)
More from the Same Authors
-
2021 : Towards the Unification and Robustness of Perturbation and Gradient Based Explanations »
· Sushant Agarwal · Shahin Jabbari · Chirag Agarwal · Sohini Upadhyay · Steven Wu · Hima Lakkaraju -
2021 : Strategic Instrumental Variable Regression: Recovering Causal Relationships From Strategic Responses »
Keegan Harris · Dung Ngo · Logan Stapleton · Hoda Heidari · Steven Wu -
2021 : Stateful Strategic Regression »
Keegan Harris · Hoda Heidari · Steven Wu -
2021 : Iterative Methods for Private Synthetic Data: Unifying Framework and New Methods »
Terrance Liu · Giuseppe Vietri · Steven Wu -
2021 : Private Multi-Task Learning: Formulation and Applications to Federated Learning »
Shengyuan Hu · Steven Wu · Virginia Smith -
2021 : Iterative Methods for Private Synthetic Data: Unifying Framework and New Methods »
Terrance Liu · Giuseppe Vietri · Steven Wu -
2021 : Understanding Clipped FedAvg: Convergence and Client-Level Differential Privacy »
xinwei zhang · Xiangyi Chen · Steven Wu · Mingyi Hong -
2021 : Improved Privacy Filters and Odometers: Time-Uniform Bounds in Privacy Composition »
Justin Whitehouse · Aaditya Ramdas · Ryan Rogers · Steven Wu -
2021 : Strategic Instrumental Variable Regression: Recovering Causal Relationships From Strategic Responses »
Keegan Harris · Dung Ngo · Logan Stapleton · Hoda Heidari · Steven Wu -
2021 : Stateful Strategic Regression »
Keegan Harris · Hoda Heidari · Steven Wu -
2021 : Of Moments and Matching: A Game-Theoretic Framework for Closing the Imitation Gap »
Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2021 : Strategic Instrumental Variable Regression: Recovering Causal Relationships From Strategic Responses »
Keegan Harris · Dung Ngo · Logan Stapleton · Hoda Heidari · Steven Wu -
2021 : Scalable Algorithms for Nonlinear Causal Inference »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2021 : Of Moments and Matching: A Game-Theoretic Framework for Closing the Imitation Gap »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2022 : Meta-Learning Adversarial Bandits »
Nina Balcan · Keegan Harris · Mikhail Khodak · Steven Wu -
2023 : Complementing a Policy with a Different Observation Space »
Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2023 : Strategyproof Decision-Making in Panel Data Settings and Beyond »
Keegan Harris · Anish Agarwal · Chara Podimata · Steven Wu -
2023 : Strategic Apple Tasting »
Keegan Harris · Chara Podimata · Steven Wu -
2023 : Strategyproof Decision-Making in Panel Data Settings and Beyond »
Keegan Harris · Anish Agarwal · Chara Podimata · Steven Wu -
2023 : Complementing a Policy with a Different Observation Space »
Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2023 : Learning Shared Safety Constraints from Multi-task Demonstrations »
Konwoo Kim · Gokul Swamy · Zuxin Liu · Ding Zhao · Sanjiban Choudhury · Steven Wu -
2023 : Strategic Apple Tasting »
Keegan Harris · Chara Podimata · Steven Wu -
2023 : Learning Shared Safety Constraints from Multi-task Demonstrations »
Konwoo Kim · Gokul Swamy · Zuxin Liu · Ding Zhao · Sanjiban Choudhury · Steven Wu -
2023 Poster: Fully-Adaptive Composition in Differential Privacy »
Justin Whitehouse · Aaditya Ramdas · Ryan Rogers · Steven Wu -
2023 Oral: Nonparametric Extensions of Randomized Response for Private Confidence Sets »
Ian Waudby-Smith · Steven Wu · Aaditya Ramdas -
2023 Poster: Nonparametric Extensions of Randomized Response for Private Confidence Sets »
Ian Waudby-Smith · Steven Wu · Aaditya Ramdas -
2023 Poster: Inverse Reinforcement Learning without Reinforcement Learning »
Gokul Swamy · David Wu · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2023 Poster: Generating Private Synthetic Data with Genetic Algorithms »
Terrance Liu · Jingwu Tang · Giuseppe Vietri · Steven Wu -
2022 Poster: Information Discrepancy in Strategic Learning »
Yahav Bechavod · Chara Podimata · Steven Wu · Juba Ziani -
2022 Poster: Constrained Variational Policy Optimization for Safe Reinforcement Learning »
Zuxin Liu · Zhepeng Cen · Vladislav Isenbaev · Wei Liu · Steven Wu · Bo Li · Ding Zhao -
2022 Poster: Causal Imitation Learning under Temporally Correlated Noise »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2022 Spotlight: Constrained Variational Policy Optimization for Safe Reinforcement Learning »
Zuxin Liu · Zhepeng Cen · Vladislav Isenbaev · Wei Liu · Steven Wu · Bo Li · Ding Zhao -
2022 Spotlight: Information Discrepancy in Strategic Learning »
Yahav Bechavod · Chara Podimata · Steven Wu · Juba Ziani -
2022 Oral: Causal Imitation Learning under Temporally Correlated Noise »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2022 Poster: Strategic Instrumental Variable Regression: Recovering Causal Relationships From Strategic Responses »
Keegan Harris · Dung Ngo · Logan Stapleton · Hoda Heidari · Steven Wu -
2022 Poster: Personalization Improves Privacy-Accuracy Tradeoffs in Federated Learning »
Alberto Bietti · Chen-Yu Wei · Miroslav Dudik · John Langford · Steven Wu -
2022 Poster: Improved Regret for Differentially Private Exploration in Linear MDP »
Dung Ngo · Giuseppe Vietri · Steven Wu -
2022 Poster: Understanding Clipping for Federated Learning: Convergence and Client-Level Differential Privacy »
xinwei zhang · Xiangyi Chen · Mingyi Hong · Steven Wu · Jinfeng Yi -
2022 Spotlight: Understanding Clipping for Federated Learning: Convergence and Client-Level Differential Privacy »
xinwei zhang · Xiangyi Chen · Mingyi Hong · Steven Wu · Jinfeng Yi -
2022 Spotlight: Improved Regret for Differentially Private Exploration in Linear MDP »
Dung Ngo · Giuseppe Vietri · Steven Wu -
2022 Spotlight: Strategic Instrumental Variable Regression: Recovering Causal Relationships From Strategic Responses »
Keegan Harris · Dung Ngo · Logan Stapleton · Hoda Heidari · Steven Wu -
2022 Spotlight: Personalization Improves Privacy-Accuracy Tradeoffs in Federated Learning »
Alberto Bietti · Chen-Yu Wei · Miroslav Dudik · John Langford · Steven Wu -
2021 Poster: Leveraging Public Data for Practical Private Query Release »
Terrance Liu · Giuseppe Vietri · Thomas Steinke · Jonathan Ullman · Steven Wu -
2021 Spotlight: Leveraging Public Data for Practical Private Query Release »
Terrance Liu · Giuseppe Vietri · Thomas Steinke · Jonathan Ullman · Steven Wu -
2021 Poster: Of Moments and Matching: A Game-Theoretic Framework for Closing the Imitation Gap »
Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2021 Spotlight: Of Moments and Matching: A Game-Theoretic Framework for Closing the Imitation Gap »
Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2021 Poster: Towards the Unification and Robustness of Perturbation and Gradient Based Explanations »
Sushant Agarwal · Shahin Jabbari · Chirag Agarwal · Sohini Upadhyay · Steven Wu · Hima Lakkaraju -
2021 Poster: Incentivizing Compliance with Algorithmic Instruments »
Dung Ngo · Logan Stapleton · Vasilis Syrgkanis · Steven Wu -
2021 Spotlight: Incentivizing Compliance with Algorithmic Instruments »
Dung Ngo · Logan Stapleton · Vasilis Syrgkanis · Steven Wu -
2021 Spotlight: Towards the Unification and Robustness of Perturbation and Gradient Based Explanations »
Sushant Agarwal · Shahin Jabbari · Chirag Agarwal · Sohini Upadhyay · Steven Wu · Hima Lakkaraju