Timezone: »
The capacity to address counterfactual "what if" inquiries is crucial for understanding and making use of causal influences. Traditional counterfactual inference usually assumes a structural causal model is available. However, in practice, such a causal model is often unknown and may not be identifiable. This paper aims to perform reliable counterfactual inference based on the (learned) qualitative causal structure and observational data, without a given causal model or even directly estimating conditional distributions. We re-cast counterfactual reasoning as an extended quantile regression problem using neural networks. The approach is statistically more efficient than existing ones, and further makes it possible to develop the generalization ability of the estimated counterfactual outcome to unseen data and provide an upper bound on the generalization error. Experiment results on multiple datasets strongly support our theoretical claims.
Author Information
Shaoan Xie (Carnegie Mellon University)
Biwei Huang (University of California San Diego)
Bin Gu (mbzuai)
Tongliang Liu (The University of Sydney)
Kun Zhang (Carnegie Mellon University)
More from the Same Authors
-
2021 : Optimal transport for causal discovery »
Ruibo Tu · Kun Zhang · Hedvig Kjellström · Cheng Zhang -
2022 : Causal Balancing for Domain Generalization »
Xinyi Wang · Michael Saxon · Jiachen Li · Hongyang Zhang · Kun Zhang · William Wang -
2022 : Invariance Principle Meets Out-of-Distribution Generalization on Graphs »
Yongqiang Chen · Yonggang Zhang · Yatao Bian · Han Yang · Kaili MA · Binghui Xie · Tongliang Liu · Bo Han · James Cheng -
2023 : Counterfactual Generation with Identifiability Guarantees »
Hanqi Yan · Lingjing Kong · Lin Gui · Yuejie Chi · Eric Xing · Yulan He · Kun Zhang -
2023 : Identification of Nonlinear Latent Hierarchical Causal Models »
Lingjing Kong · Biwei Huang · Feng Xie · Eric Xing · Yuejie Chi · Kun Zhang -
2023 : Natural Counterfactuals With Necessary Backtracking »
Guangyuan Hao · Jiji Zhang · Hao Wang · Kun Zhang -
2023 : Natural Counterfactuals With Necessary Backtracking »
Guangyuan Hao · Jiji Zhang · Hao Wang · Kun Zhang -
2023 Poster: Eliminating Adversarial Noise via Information Discard and Robust Representation Restoration »
Dawei Zhou · Yukun Chen · Nannan Wang · Decheng Liu · Xinbo Gao · Tongliang Liu -
2023 Poster: Identifiability of Label Noise Transition Matrix »
Yang Liu · Hao Cheng · Kun Zhang -
2023 Poster: Causal Discovery with Latent Confounders Based on Higher-Order Cumulants »
Ruichu Cai · Zhiyi Huang · Wei Chen · Zhifeng Hao · Kun Zhang -
2023 Poster: Feature Expansion for Graph Neural Networks »
Jiaqi Sun · Lin Zhang · Guangyi Chen · Peng XU · Kun Zhang · Yujiu Yang -
2023 Poster: Diversity-enhancing Generative Network for Few-shot Hypothesis Adaptation »
Ruijiang Dong · Feng Liu · Haoang Chi · Tongliang Liu · Mingming Gong · Gang Niu · Masashi Sugiyama · Bo Han -
2023 Poster: Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection Capability »
Jianing Zhu · Hengzhuang Li · Jiangchao Yao · Tongliang Liu · Jianliang Xu · Bo Han -
2023 Poster: A Universal Unbiased Method for Classification from Aggregate Observations »
Zixi Wei · Lei Feng · Bo Han · Tongliang Liu · Gang Niu · Xiaofeng Zhu · Heng Tao Shen -
2023 Poster: Model Transferability with Responsive Decision Subjects »
Yatong Chen · Zeyu Tang · Kun Zhang · Yang Liu -
2023 Poster: Exploring Model Dynamics for Accumulative Poisoning Discovery »
Jianing Zhu · Xiawei Guo · Jiangchao Yao · Chao Du · LI He · Shuo Yuan · Tongliang Liu · Liang Wang · Bo Han -
2023 Poster: Evolving Semantic Prototype Improves Generative Zero-Shot Learning »
Shiming Chen · Wenjin Hou · Ziming Hong · Xiaohan Ding · Yibing Song · Xinge You · Tongliang Liu · Kun Zhang -
2023 Poster: Which is Better for Learning with Noisy Labels: The Semi-supervised Method or Modeling Label Noise? »
Yu Yao · Mingming Gong · Yuxuan Du · Jun Yu · Bo Han · Kun Zhang · Tongliang Liu -
2023 Poster: Phase-aware Adversarial Defense for Improving Adversarial Robustness »
Dawei Zhou · Nannan Wang · Heng Yang · Xinbo Gao · Tongliang Liu -
2023 Poster: Detecting Out-of-distribution Data through In-distribution Class Prior »
Xue JIANG · Feng Liu · zhen fang · Hong Chen · Tongliang Liu · Feng Zheng · Bo Han -
2022 : Model Transferability With Responsive Decision Subjects »
Yang Liu · Yatong Chen · Zeyu Tang · Kun Zhang -
2022 Poster: Estimating Instance-dependent Bayes-label Transition Matrix using a Deep Neural Network »
Shuo Yang · Erkun Yang · Bo Han · Yang Liu · Min Xu · Gang Niu · Tongliang Liu -
2022 Spotlight: Estimating Instance-dependent Bayes-label Transition Matrix using a Deep Neural Network »
Shuo Yang · Erkun Yang · Bo Han · Yang Liu · Min Xu · Gang Niu · Tongliang Liu -
2022 Poster: Understanding Robust Overfitting of Adversarial Training and Beyond »
Chaojian Yu · Bo Han · Li Shen · Jun Yu · Chen Gong · Mingming Gong · Tongliang Liu -
2022 Poster: Identification of Linear Non-Gaussian Latent Hierarchical Structure »
Feng Xie · Biwei Huang · Zhengming Chen · Yangbo He · zhi geng · Kun Zhang -
2022 Poster: Action-Sufficient State Representation Learning for Control with Structural Constraints »
Biwei Huang · Chaochao Lu · Liu Leqi · Jose Miguel Hernandez-Lobato · Clark Glymour · Bernhard Schölkopf · Kun Zhang -
2022 Poster: Modeling Adversarial Noise for Adversarial Training »
Dawei Zhou · Nannan Wang · Bo Han · Tongliang Liu -
2022 Poster: Improving Adversarial Robustness via Mutual Information Estimation »
Dawei Zhou · Nannan Wang · Xinbo Gao · Bo Han · Xiaoyu Wang · Yibing Zhan · Tongliang Liu -
2022 Spotlight: Understanding Robust Overfitting of Adversarial Training and Beyond »
Chaojian Yu · Bo Han · Li Shen · Jun Yu · Chen Gong · Mingming Gong · Tongliang Liu -
2022 Spotlight: Action-Sufficient State Representation Learning for Control with Structural Constraints »
Biwei Huang · Chaochao Lu · Liu Leqi · Jose Miguel Hernandez-Lobato · Clark Glymour · Bernhard Schölkopf · Kun Zhang -
2022 Spotlight: Identification of Linear Non-Gaussian Latent Hierarchical Structure »
Feng Xie · Biwei Huang · Zhengming Chen · Yangbo He · zhi geng · Kun Zhang -
2022 Spotlight: Improving Adversarial Robustness via Mutual Information Estimation »
Dawei Zhou · Nannan Wang · Xinbo Gao · Bo Han · Xiaoyu Wang · Yibing Zhan · Tongliang Liu -
2022 Spotlight: Modeling Adversarial Noise for Adversarial Training »
Dawei Zhou · Nannan Wang · Bo Han · Tongliang Liu -
2022 Poster: To Smooth or Not? When Label Smoothing Meets Noisy Labels »
Jiaheng Wei · Hangyu Liu · Tongliang Liu · Gang Niu · Masashi Sugiyama · Yang Liu -
2022 Poster: Partial disentanglement for domain adaptation »
Lingjing Kong · Shaoan Xie · Weiran Yao · Yujia Zheng · Guangyi Chen · Petar Stojanov · Victor Akinwande · Kun Zhang -
2022 Spotlight: Partial disentanglement for domain adaptation »
Lingjing Kong · Shaoan Xie · Weiran Yao · Yujia Zheng · Guangyi Chen · Petar Stojanov · Victor Akinwande · Kun Zhang -
2022 Oral: To Smooth or Not? When Label Smoothing Meets Noisy Labels »
Jiaheng Wei · Hangyu Liu · Tongliang Liu · Gang Niu · Masashi Sugiyama · Yang Liu -
2021 Poster: Towards Defending against Adversarial Examples via Attack-Invariant Features »
Dawei Zhou · Tongliang Liu · Bo Han · Nannan Wang · Chunlei Peng · Xinbo Gao -
2021 Poster: Provably End-to-end Label-noise Learning without Anchor Points »
Xuefeng Li · Tongliang Liu · Bo Han · Gang Niu · Masashi Sugiyama -
2021 Poster: Learning Diverse-Structured Networks for Adversarial Robustness »
Xuefeng Du · Jingfeng Zhang · Bo Han · Tongliang Liu · Yu Rong · Gang Niu · Junzhou Huang · Masashi Sugiyama -
2021 Poster: Maximum Mean Discrepancy Test is Aware of Adversarial Attacks »
Ruize Gao · Feng Liu · Jingfeng Zhang · Bo Han · Tongliang Liu · Gang Niu · Masashi Sugiyama -
2021 Spotlight: Towards Defending against Adversarial Examples via Attack-Invariant Features »
Dawei Zhou · Tongliang Liu · Bo Han · Nannan Wang · Chunlei Peng · Xinbo Gao -
2021 Spotlight: Provably End-to-end Label-noise Learning without Anchor Points »
Xuefeng Li · Tongliang Liu · Bo Han · Gang Niu · Masashi Sugiyama -
2021 Spotlight: Learning Diverse-Structured Networks for Adversarial Robustness »
Xuefeng Du · Jingfeng Zhang · Bo Han · Tongliang Liu · Yu Rong · Gang Niu · Junzhou Huang · Masashi Sugiyama -
2021 Spotlight: Maximum Mean Discrepancy Test is Aware of Adversarial Attacks »
Ruize Gao · Feng Liu · Jingfeng Zhang · Bo Han · Tongliang Liu · Gang Niu · Masashi Sugiyama -
2021 Poster: Class2Simi: A Noise Reduction Perspective on Learning with Noisy Labels »
Songhua Wu · Xiaobo Xia · Tongliang Liu · Bo Han · Mingming Gong · Nannan Wang · Haifeng Liu · Gang Niu -
2021 Poster: Confidence Scores Make Instance-dependent Label-noise Learning Possible »
Antonin Berthon · Bo Han · Gang Niu · Tongliang Liu · Masashi Sugiyama -
2021 Spotlight: Class2Simi: A Noise Reduction Perspective on Learning with Noisy Labels »
Songhua Wu · Xiaobo Xia · Tongliang Liu · Bo Han · Mingming Gong · Nannan Wang · Haifeng Liu · Gang Niu -
2021 Oral: Confidence Scores Make Instance-dependent Label-noise Learning Possible »
Antonin Berthon · Bo Han · Gang Niu · Tongliang Liu · Masashi Sugiyama -
2020 Poster: Dual-Path Distillation: A Unified Framework to Improve Black-Box Attacks »
Yonggang Zhang · Ya Li · Tongliang Liu · Xinmei Tian -
2020 Poster: Learning with Bounded Instance- and Label-dependent Label Noise »
Jiacheng Cheng · Tongliang Liu · Kotagiri Ramamohanarao · Dacheng Tao -
2020 Poster: Label-Noise Robust Domain Adaptation »
Xiyu Yu · Tongliang Liu · Mingming Gong · Kun Zhang · Kayhan Batmanghelich · Dacheng Tao -
2020 Poster: LTF: A Label Transformation Framework for Correcting Label Shift »
Jiaxian Guo · Mingming Gong · Tongliang Liu · Kun Zhang · Dacheng Tao -
2020 Poster: Characterizing Distribution Equivalence and Structure Learning for Cyclic and Acyclic Directed Graphs »
AmirEmad Ghassami · Alan Yang · Negar Kiyavash · Kun Zhang -
2019 Poster: Causal Discovery and Forecasting in Nonstationary Environments with State-Space Models »
Biwei Huang · Kun Zhang · Mingming Gong · Clark Glymour -
2019 Oral: Causal Discovery and Forecasting in Nonstationary Environments with State-Space Models »
Biwei Huang · Kun Zhang · Mingming Gong · Clark Glymour -
2019 Poster: On Learning Invariant Representations for Domain Adaptation »
Han Zhao · Remi Tachet des Combes · Kun Zhang · Geoff Gordon -
2019 Oral: On Learning Invariant Representations for Domain Adaptation »
Han Zhao · Remi Tachet des Combes · Kun Zhang · Geoff Gordon