Timezone: »
Estimation of the complete distribution of a random variable is a useful primitive for both manual and automated decision making. This problem has received extensive attention in the i.i.d. setting, but the arbitrary data dependent setting remains largely unaddressed. Consistent with known impossibility results, we present computationally felicitous time-uniform and value-uniform bounds on the CDF of the running averaged conditional distribution of a real-valued random variable which are always valid and sometimes trivial, along with an instance-dependent convergence guarantee. The importance-weighted extension is appropriate for estimating complete counterfactual distributions of rewards given controlled experimentation data exhaust, e.g., from an A/B test or a contextual bandit.
Author Information
Paul Mineiro (Microsoft)
Steve Howard (Voleon)
More from the Same Authors
-
2022 : Interaction-Grounded Learning with Action-inclusive Feedback »
Tengyang Xie · Akanksha Saran · Dylan Foster · Lekan Molu · Ida Momennejad · Nan Jiang · Paul Mineiro · John Langford -
2023 Poster: Infinite Action Contextual Bandits with Reusable Data Exhaust »
Mark Rucker · Yinglun Zhu · Paul Mineiro -
2022 Poster: Contextual Bandits with Large Action Spaces: Made Practical »
Yinglun Zhu · Dylan Foster · John Langford · Paul Mineiro -
2022 Spotlight: Contextual Bandits with Large Action Spaces: Made Practical »
Yinglun Zhu · Dylan Foster · John Langford · Paul Mineiro -
2022 Poster: Contextual Bandits with Smooth Regret: Efficient Learning in Continuous Action Spaces »
Yinglun Zhu · Paul Mineiro -
2022 Oral: Contextual Bandits with Smooth Regret: Efficient Learning in Continuous Action Spaces »
Yinglun Zhu · Paul Mineiro -
2021 Poster: Off-Policy Confidence Sequences »
Nikos Karampatziakis · Paul Mineiro · Aaditya Ramdas -
2021 Spotlight: Off-Policy Confidence Sequences »
Nikos Karampatziakis · Paul Mineiro · Aaditya Ramdas -
2021 Poster: Interaction-Grounded Learning »
Tengyang Xie · John Langford · Paul Mineiro · Ida Momennejad -
2021 Spotlight: Interaction-Grounded Learning »
Tengyang Xie · John Langford · Paul Mineiro · Ida Momennejad -
2021 Poster: ChaCha for Online AutoML »
Qingyun Wu · Chi Wang · John Langford · Paul Mineiro · Marco Rossi -
2021 Spotlight: ChaCha for Online AutoML »
Qingyun Wu · Chi Wang · John Langford · Paul Mineiro · Marco Rossi -
2019 Poster: Contextual Memory Trees »
Wen Sun · Alina Beygelzimer · Hal Daumé III · John Langford · Paul Mineiro -
2019 Oral: Contextual Memory Trees »
Wen Sun · Alina Beygelzimer · Hal Daumé III · John Langford · Paul Mineiro