Timezone: »
Time-dependent partial differential equations (PDEs) are ubiquitous in science and engineering. Recently, mostly due to the high computational cost of traditional solution techniques, deep neural network based surrogates have gained increased interest. The practical utility of such neural PDE solvers relies on their ability to provide accurate, stable predictions over long time horizons, which is a notoriously hard problem. In this work, we present a large-scale analysis of common temporal rollout strategies, identifying the neglect of non-dominant spatial frequency information, often associated with high frequencies in PDE solutions, as the primary pitfall limiting stable, accurate rollout performance. Based on these insights, we draw inspiration from recent advances in diffusion models to introduce PDE-Refiner; a novel model class that enables more accurate modeling of all frequency components via a multi-step refinement process. We validate PDE-Refiner on challenging benchmarks of complex fluid dynamics, demonstrating stable and accurate rollouts that consistently outperform state-of-the-art models, including neural, numerical, and hybrid neural-numerical architectures. Finally, PDE-Refiner's connection to diffusion models enables an accurate and efficient assessment of the model's predictive uncertainty, allowing us to estimate when the surrogate becomes inaccurate.
Author Information
Phillip Lippe (University of Amsterdam)
Bastiaan Veeling (University of Amsterdam)
Paris Perdikaris (University of Pennsylvania)
Richard E Turner (University of Cambridge)
Richard Turner holds a Lectureship (equivalent to US Assistant Professor) in Computer Vision and Machine Learning in the Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, UK. He is a Fellow of Christ's College Cambridge. Previously, he held an EPSRC Postdoctoral research fellowship which he spent at both the University of Cambridge and the Laboratory for Computational Vision, NYU, USA. He has a PhD degree in Computational Neuroscience and Machine Learning from the Gatsby Computational Neuroscience Unit, UCL, UK and a M.Sci. degree in Natural Sciences (specialism Physics) from the University of Cambridge, UK. His research interests include machine learning, signal processing and developing probabilistic models of perception.
Johannes Brandstetter (Microsoft)
More from the Same Authors
-
2021 : Attacking Few-Shot Classifiers with Adversarial Support Poisoning »
Elre Oldewage · John Bronskill · Richard E Turner -
2023 : Beyond Intuition, a Framework for Applying GPs to Real-World Data »
Kenza Tazi · Jihao Andreas Lin · ST John · Hong Ge · Richard E Turner · Ross Viljoen · Alex Gardner -
2023 : PPDONet: Deep Operator Networks for Fast Prediction of Steady-State Solutions in Disk-Planet Systems »
Shunyuan Mao · Ruobing Dong · Lu Lu · Kwang Moo Yi · Sifan Wang · Paris Perdikaris -
2023 : ClimaX: A Foundation Model for Weather and Climate »
Tung Nguyen · Johannes Brandstetter · Ashish Kapoor · Jayesh K. Gupta · Aditya Grover -
2023 : Lie Point Symmetry and Physics Informed Networks »
Tara Akhound-Sadegh · Laurence Perreault-Levasseur · Johannes Brandstetter · Max Welling · Siamak Ravanbakhsh -
2023 Poster: ClimaX: A foundation model for weather and climate »
Tung Nguyen · Johannes Brandstetter · Ashish Kapoor · Jayesh K. Gupta · Aditya Grover -
2023 Poster: Mitigating Propagation Failures in Physics-informed Neural Networks using Retain-Resample-Release (R3) Sampling »
Arka Daw · Jie Bu · Sifan Wang · Paris Perdikaris · Anuj Karpatne -
2023 Poster: Variational Autoencoding Neural Operators »
Jacob H. Seidman · Georgios Kissas · George J. Pappas · Paris Perdikaris -
2023 Poster: Geometric Clifford Algebra Networks »
David Ruhe · Jayesh K. Gupta · Steven De Keninck · Max Welling · Johannes Brandstetter -
2022 Poster: CITRIS: Causal Identifiability from Temporal Intervened Sequences »
Phillip Lippe · Sara Magliacane · Sindy Löwe · Yuki Asano · Taco Cohen · Stratis Gavves -
2022 Spotlight: CITRIS: Causal Identifiability from Temporal Intervened Sequences »
Phillip Lippe · Sara Magliacane · Sindy Löwe · Yuki Asano · Taco Cohen · Stratis Gavves -
2021 Poster: Active Deep Probabilistic Subsampling »
Hans van Gorp · Iris Huijben · Bastiaan Veeling · Nicola Pezzotti · Ruud J. G. van Sloun -
2021 Spotlight: Active Deep Probabilistic Subsampling »
Hans van Gorp · Iris Huijben · Bastiaan Veeling · Nicola Pezzotti · Ruud J. G. van Sloun -
2020 Poster: The k-tied Normal Distribution: A Compact Parameterization of Gaussian Mean Field Posteriors in Bayesian Neural Networks »
Jakub Swiatkowski · Kevin Roth · Bastiaan Veeling · Linh Tran · Joshua V Dillon · Jasper Snoek · Stephan Mandt · Tim Salimans · Rodolphe Jenatton · Sebastian Nowozin -
2020 Poster: Scalable Exact Inference in Multi-Output Gaussian Processes »
Wessel Bruinsma · Eric Perim Martins · William Tebbutt · Scott Hosking · Arno Solin · Richard E Turner -
2020 Poster: TaskNorm: Rethinking Batch Normalization for Meta-Learning »
John Bronskill · Jonathan Gordon · James Requeima · Sebastian Nowozin · Richard E Turner -
2020 Poster: How Good is the Bayes Posterior in Deep Neural Networks Really? »
Florian Wenzel · Kevin Roth · Bastiaan Veeling · Jakub Swiatkowski · Linh Tran · Stephan Mandt · Jasper Snoek · Tim Salimans · Rodolphe Jenatton · Sebastian Nowozin -
2018 Poster: The Mirage of Action-Dependent Baselines in Reinforcement Learning »
George Tucker · Surya Bhupatiraju · Shixiang Gu · Richard E Turner · Zoubin Ghahramani · Sergey Levine -
2018 Oral: The Mirage of Action-Dependent Baselines in Reinforcement Learning »
George Tucker · Surya Bhupatiraju · Shixiang Gu · Richard E Turner · Zoubin Ghahramani · Sergey Levine -
2018 Poster: Structured Evolution with Compact Architectures for Scalable Policy Optimization »
Krzysztof Choromanski · Mark Rowland · Vikas Sindhwani · Richard E Turner · Adrian Weller -
2018 Oral: Structured Evolution with Compact Architectures for Scalable Policy Optimization »
Krzysztof Choromanski · Mark Rowland · Vikas Sindhwani · Richard E Turner · Adrian Weller -
2017 Poster: Magnetic Hamiltonian Monte Carlo »
Nilesh Tripuraneni · Mark Rowland · Zoubin Ghahramani · Richard E Turner -
2017 Talk: Magnetic Hamiltonian Monte Carlo »
Nilesh Tripuraneni · Mark Rowland · Zoubin Ghahramani · Richard E Turner -
2017 Poster: Sequence Tutor: Conservative fine-tuning of sequence generation models with KL-control »
Natasha Jaques · Shixiang Gu · Dzmitry Bahdanau · Jose Miguel Hernandez-Lobato · Richard E Turner · Douglas Eck -
2017 Talk: Sequence Tutor: Conservative fine-tuning of sequence generation models with KL-control »
Natasha Jaques · Shixiang Gu · Dzmitry Bahdanau · Jose Miguel Hernandez-Lobato · Richard E Turner · Douglas Eck