Timezone: »
Deep Equilibrium Based Neural Operators for Steady-State PDEs
Tanya Marwah · Ashwini Pokle · Zico Kolter · Zachary Lipton · Jianfeng Lu · Andrej Risteski
Event URL: https://openreview.net/forum?id=FzXsSCF50t »
Data-driven machine learning approaches are being increasingly used to solve partial differential equations (PDEs). They have shown particularly striking successes when training an operator, which takes as input a PDE in some family, and outputs its solution. However, the architectural design space, especially given structural knowledge of the PDE family of interest, is still poorly understood. We seek to remedy this gap by studying the benefits of weight-tied neural network architectures for steady-state PDEs. To achieve this, we first demonstrate that the solution of most steady-state PDEs can be expressed as a fixed point of a non-linear operator. Motivated by this observation, we propose FNO-DEQ, a deep equilibrium variant of the FNO architecture that directly solves for the solution of a steady-state PDE as the infinite-depth fixed point of an implicit operator layer using a black-box root solver and differentiates analytically through this fixed point resulting in $\mathcal{O}(1)$ training memory. Our experiments indicate that FNO-DEQ-based architectures outperform FNO-based baselines with $4\times$ the number of parameters in predicting the solution to steady-state PDEs such as Darcy Flow and steady-state incompressible Navier-Stokes. Finally, we show FNO-DEQ is more robust when trained with datasets with more noisy observations than the FNO-based baselines, demonstrating the benefits of using appropriate inductive biases in architectural design for different neural network based PDE solvers. Further, we show a universal approximation result that demonstrates that FNO-DEQ can approximate the solution to any steady-state PDE that can be written as a fixed point equation.
Data-driven machine learning approaches are being increasingly used to solve partial differential equations (PDEs). They have shown particularly striking successes when training an operator, which takes as input a PDE in some family, and outputs its solution. However, the architectural design space, especially given structural knowledge of the PDE family of interest, is still poorly understood. We seek to remedy this gap by studying the benefits of weight-tied neural network architectures for steady-state PDEs. To achieve this, we first demonstrate that the solution of most steady-state PDEs can be expressed as a fixed point of a non-linear operator. Motivated by this observation, we propose FNO-DEQ, a deep equilibrium variant of the FNO architecture that directly solves for the solution of a steady-state PDE as the infinite-depth fixed point of an implicit operator layer using a black-box root solver and differentiates analytically through this fixed point resulting in $\mathcal{O}(1)$ training memory. Our experiments indicate that FNO-DEQ-based architectures outperform FNO-based baselines with $4\times$ the number of parameters in predicting the solution to steady-state PDEs such as Darcy Flow and steady-state incompressible Navier-Stokes. Finally, we show FNO-DEQ is more robust when trained with datasets with more noisy observations than the FNO-based baselines, demonstrating the benefits of using appropriate inductive biases in architectural design for different neural network based PDE solvers. Further, we show a universal approximation result that demonstrates that FNO-DEQ can approximate the solution to any steady-state PDE that can be written as a fixed point equation.
Author Information
Tanya Marwah (Carnegie Mellon University)
Ashwini Pokle (Carnegie Mellon University)
Zico Kolter (Carnegie Mellon University / Bosch Center for AI)
Zachary Lipton (CMU & Abridge)
Jianfeng Lu (Duke University)
Andrej Risteski (CMU)
More from the Same Authors
-
2021 : The Effects of Invertibility on the Representational Complexity of Encoders in Variational Autoencoders »
Divyansh Pareek · Andrej Risteski -
2021 : Empirical robustification of pre-trained classifiers »
Mohammad Sadegh Norouzzadeh · Wan-Yi Lin · Leonid Boytsov · Leslie Rice · Huan Zhang · Filipe Condessa · Zico Kolter -
2021 : Certified robustness against adversarial patch attacks via randomized cropping »
Wan-Yi Lin · Fatemeh Sheikholeslami · jinghao shi · Leslie Rice · Zico Kolter -
2021 : Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification »
Shiqi Wang · Huan Zhang · Kaidi Xu · Xue Lin · Suman Jana · Cho-Jui Hsieh · Zico Kolter -
2021 : Assessing Generalization of SGD via Disagreement Rates »
YiDing Jiang · Vaishnavh Nagarajan · Zico Kolter -
2021 : Do You See What I See? A Comparison of Radiologist Eye Gaze to Computer Vision Saliency Maps for Chest X-ray Classification »
Jesse Kim · Helen Zhou · Zachary Lipton -
2022 : Domain Adaptation under Open Set Label Shift »
Saurabh Garg · Sivaraman Balakrishnan · Zachary Lipton -
2022 : Unsupervised Learning under Latent Label Shift »
Pranav Mani · Manley Roberts · Saurabh Garg · Zachary Lipton -
2022 : Characterizing Datapoints via Second-Split Forgetting »
Pratyush Maini · Saurabh Garg · Zachary Lipton · Zico Kolter -
2022 : Improving adversarial robustness via joint classification and multiple explicit detection classes »
Sina Baharlouei · Fatemeh Sheikholeslami · Meisam Razaviyayn · Zico Kolter -
2022 : Agreement-on-the-Line: Predicting the Performance of Neural Networks under Distribution Shift »
Christina Baek · Yiding Jiang · aditi raghunathan · Zico Kolter -
2022 : Counterfactual Metrics for Auditing Black-Box Recommender Systems for Ethical Concerns »
Nil-Jana Akpinar · Liu Leqi · Dylan Hadfield-Menell · Zachary Lipton -
2022 : RiskyZoo: A Library for Risk-Sensitive Supervised Learning »
William Wong · Audrey Huang · Liu Leqi · Kamyar Azizzadenesheli · Zachary Lipton -
2023 : On the Joint Interaction of Models, Data, and Features »
YiDing Jiang · Christina Baek · Zico Kolter -
2023 : Characterizing and Improving Transformer Solutions for Dyck Grammars »
Kaiyue Wen · Yuchen Li · Bingbin Liu · Andrej Risteski -
2023 : Model-tuning Via Prompts Makes NLP Models Adversarially Robust »
Mrigank Raman · Pratyush Maini · Zico Kolter · Zachary Lipton · Danish Pruthi -
2023 : Complementary Benefits of Contrastive Learning and Self-Training Under Distribution Shift »
Saurabh Garg · Amrith Setlur · Zachary Lipton · Sivaraman Balakrishnan · Virginia Smith · Aditi Raghunathan -
2023 : Why is SAM Robust to Label Noise? »
Christina Baek · Zico Kolter · Aditi Raghunathan -
2023 : Fit Like You Sample: Sample-Efficient Generalized Score Matching from Fast Mixing Markov Chains »
Yilong Qin · Andrej Risteski -
2023 : How to Cope with Gradual Data Drift? »
Rasool Fakoor · Jonas Mueller · Zachary Lipton · Pratik Chaudhari · Alex Smola -
2023 : TMARS: Improving Visual Representations by Circumventing Text Feature Learning »
Pratyush Maini · Sachin Goyal · Zachary Lipton · Zico Kolter · Aditi Raghunathan -
2023 : (Un)interpretability of Transformers: a case study with Dyck grammars »
Kaiyue Wen · Yuchen Li · Bingbin Liu · Andrej Risteski -
2023 : Bayesian Neural Networks with Domain Knowledge »
Dylan Sam · Rattana Pukdee · Daniel Jeong · Yewon Byun · Zico Kolter -
2023 : How Do Transformers Learn Topic Structure: Towards a Mechanistic Understanding »
Yuchen Li · Yuanzhi Li · Andrej Risteski -
2023 : Identifying Inequity in Treatment Allocation »
Yewon Byun · Dylan Sam · Zachary Lipton · Bryan Wilder -
2023 : Provable benefits of score matching »
Chirag Pabbaraju · Dhruv Rohatgi · Anish Sevekari · Holden Lee · Ankur Moitra · Andrej Risteski -
2023 : Fit Like You Sample: Sample-Efficient Generalized Score Matching from Fast Mixing Markov Chains »
Yilong Qin · Andrej Risteski -
2023 : Language Models are Weak Learners »
Hariharan Manikandan · Yiding Jiang · Zico Kolter -
2023 : A Simple and Effective Pruning Approach for Large Language Models »
Mingjie Sun · Zhuang Liu · Anna Bair · Zico Kolter -
2023 : Conditional Diffusion Replay for Continual Learning in Medical Settings »
Yewon Byun · Saurabh Garg · Sanket Vaibhav Mehta · Praveer Singh · Jayashree Kalpathy-cramer · Bryan Wilder · Zachary Lipton -
2023 : (Un)interpretability of Transformers: a case study with Dyck grammars »
Kaiyue Wen · Yuchen Li · Bingbin Liu · Andrej Risteski -
2023 : One-Step Diffusion Distillation via Deep Equilibrium Models »
Zhengyang Geng · Ashwini Pokle · Zico Kolter -
2023 : Differentially Private Generation of High Fidelity Samples From Diffusion Models »
Vikash Sehwag · Ashwinee Panda · Ashwini Pokle · Xinyu Tang · Saeed Mahloujifar · Mung Chiang · Zico Kolter · Prateek Mittal -
2023 : Understanding prompt engineering does not require rethinking generalization »
Victor Akinwande · Yiding Jiang · Dylan Sam · Zico Kolter -
2023 : SCIS 2023 Panel, The Future of Generalization: Scale, Safety and Beyond »
Maggie Makar · Samuel Bowman · Zachary Lipton · Adam Gleave -
2023 : Zico Kolter »
Zico Kolter -
2023 : Provable benefits of score matching »
Andrej Risteski -
2023 : Formal Verification for Neural Networks with General Nonlinearities via Branch-and-Bound »
Zhouxing Shi · Qirui Jin · Huan Zhang · Zico Kolter · Suman Jana · Cho-Jui Hsieh -
2023 Workshop: 2nd Workshop on Formal Verification of Machine Learning »
Mark Müller · Brendon G. Anderson · Leslie Rice · Zhouxing Shi · Shubham Ugare · Huan Zhang · Martin Vechev · Zico Kolter · Somayeh Sojoudi · Cho-Jui Hsieh -
2023 : Opening Remarks by Prof. Zico Kolter (CMU) »
Zico Kolter -
2023 Oral: Mimetic Initialization of Self-Attention Layers »
Asher Trockman · Zico Kolter -
2023 Poster: Abstracting Imperfect Information Away from Two-Player Zero-Sum Games »
Samuel Sokota · Ryan D'Orazio · Chun Kai Ling · David Wu · Zico Kolter · Noam Brown -
2023 Poster: Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective »
Tanya Marwah · Zachary Lipton · Jianfeng Lu · Andrej Risteski -
2023 Poster: Can Neural Network Memorization Be Localized? »
Pratyush Maini · Michael Mozer · Hanie Sedghi · Zachary Lipton · Zico Kolter · Chiyuan Zhang -
2023 Poster: Global optimality of Elman-type RNNs in the mean-field regime »
Andrea Agazzi · Jianfeng Lu · Sayan Mukherjee -
2023 Poster: How Do Transformers Learn Topic Structure: Towards a Mechanistic Understanding »
Yuchen Li · Yuanzhi Li · Andrej Risteski -
2023 Poster: Improved Analysis of Score-based Generative Modeling: User-Friendly Bounds under Minimal Smoothness Assumptions »
Hongrui Chen · Holden Lee · Jianfeng Lu -
2023 Poster: RLSbench: Domain Adaptation Under Relaxed Label Shift »
Saurabh Garg · Nick Erickson · University of California James Sharpnack · Alex Smola · Sivaraman Balakrishnan · Zachary Lipton -
2023 Poster: CHiLS: Zero-Shot Image Classification with Hierarchical Label Sets »
Zachary Novack · Julian McAuley · Zachary Lipton · Saurabh Garg -
2023 Poster: On Enhancing Expressive Power via Compositions of Single Fixed-Size ReLU Network »
Shijun Zhang · Jianfeng Lu · Hongkai Zhao -
2023 Poster: Mimetic Initialization of Self-Attention Layers »
Asher Trockman · Zico Kolter -
2022 Workshop: Principles of Distribution Shift (PODS) »
Elan Rosenfeld · Saurabh Garg · Shibani Santurkar · Jamie Morgenstern · Hossein Mobahi · Zachary Lipton · Andrej Risteski -
2022 Workshop: Workshop on Formal Verification of Machine Learning »
Huan Zhang · Leslie Rice · Kaidi Xu · aditi raghunathan · Wan-Yi Lin · Cho-Jui Hsieh · Clark Barrett · Martin Vechev · Zico Kolter -
2022 Poster: A Branch and Bound Framework for Stronger Adversarial Attacks of ReLU Networks »
Huan Zhang · Shiqi Wang · Kaidi Xu · Yihan Wang · Suman Jana · Cho-Jui Hsieh · Zico Kolter -
2022 Spotlight: A Branch and Bound Framework for Stronger Adversarial Attacks of ReLU Networks »
Huan Zhang · Shiqi Wang · Kaidi Xu · Yihan Wang · Suman Jana · Cho-Jui Hsieh · Zico Kolter -
2022 Poster: Supervised Learning with General Risk Functionals »
Liu Leqi · Audrey Huang · Zachary Lipton · Kamyar Azizzadenesheli -
2022 Poster: Communicating via Markov Decision Processes »
Samuel Sokota · Christian Schroeder · Maximilian Igl · Luisa Zintgraf · Phil Torr · Martin Strohmeier · Zico Kolter · Shimon Whiteson · Jakob Foerster -
2022 Spotlight: Supervised Learning with General Risk Functionals »
Liu Leqi · Audrey Huang · Zachary Lipton · Kamyar Azizzadenesheli -
2022 Spotlight: Communicating via Markov Decision Processes »
Samuel Sokota · Christian Schroeder · Maximilian Igl · Luisa Zintgraf · Phil Torr · Martin Strohmeier · Zico Kolter · Shimon Whiteson · Jakob Foerster -
2021 Workshop: A Blessing in Disguise: The Prospects and Perils of Adversarial Machine Learning »
Hang Su · Yinpeng Dong · Tianyu Pang · Eric Wong · Zico Kolter · Shuo Feng · Bo Li · Henry Liu · Dan Hendrycks · Francesco Croce · Leslie Rice · Tian Tian -
2021 : RL Explainability & Interpretability Panel »
Ofra Amir · Finale Doshi-Velez · Alan Fern · Zachary Lipton · Omer Gottesman · Niranjani Prasad -
2021 Poster: Correcting Exposure Bias for Link Recommendation »
Shantanu Gupta · Hao Wang · Zachary Lipton · Yuyang Wang -
2021 Spotlight: Correcting Exposure Bias for Link Recommendation »
Shantanu Gupta · Hao Wang · Zachary Lipton · Yuyang Wang -
2021 Poster: DORO: Distributional and Outlier Robust Optimization »
Runtian Zhai · Chen Dan · Zico Kolter · Pradeep Ravikumar -
2021 Poster: RATT: Leveraging Unlabeled Data to Guarantee Generalization »
Saurabh Garg · Sivaraman Balakrishnan · Zico Kolter · Zachary Lipton -
2021 Spotlight: DORO: Distributional and Outlier Robust Optimization »
Runtian Zhai · Chen Dan · Zico Kolter · Pradeep Ravikumar -
2021 Oral: RATT: Leveraging Unlabeled Data to Guarantee Generalization »
Saurabh Garg · Sivaraman Balakrishnan · Zico Kolter · Zachary Lipton -
2021 Poster: Representational aspects of depth and conditioning in normalizing flows »
Frederic Koehler · Viraj Mehta · Andrej Risteski -
2021 Spotlight: Representational aspects of depth and conditioning in normalizing flows »
Frederic Koehler · Viraj Mehta · Andrej Risteski -
2021 Poster: On Proximal Policy Optimization's Heavy-tailed Gradients »
Saurabh Garg · Joshua Zhanson · Emilio Parisotto · Adarsh Prasad · Zico Kolter · Zachary Lipton · Sivaraman Balakrishnan · Ruslan Salakhutdinov · Pradeep Ravikumar -
2021 Poster: Stabilizing Equilibrium Models by Jacobian Regularization »
Shaojie Bai · Vladlen Koltun · Zico Kolter -
2021 Spotlight: On Proximal Policy Optimization's Heavy-tailed Gradients »
Saurabh Garg · Joshua Zhanson · Emilio Parisotto · Adarsh Prasad · Zico Kolter · Zachary Lipton · Sivaraman Balakrishnan · Ruslan Salakhutdinov · Pradeep Ravikumar -
2021 Spotlight: Stabilizing Equilibrium Models by Jacobian Regularization »
Shaojie Bai · Vladlen Koltun · Zico Kolter -
2020 : Invited Talk: Zico Kolter (Q&A) »
Zico Kolter -
2020 : Invited Talk: Zico Kolter »
Zico Kolter -
2020 Poster: Empirical Study of the Benefits of Overparameterization in Learning Latent Variable Models »
Rares-Darius Buhai · Yoni Halpern · Yoon Kim · Andrej Risteski · David Sontag -
2020 Poster: A Mean Field Analysis Of Deep ResNet And Beyond: Towards Provably Optimization Via Overparameterization From Depth »
Yiping Lu · Chao Ma · Yulong Lu · Jianfeng Lu · Lexing Ying -
2020 Poster: Adversarial Robustness Against the Union of Multiple Perturbation Models »
Pratyush Maini · Eric Wong · Zico Kolter -
2020 Poster: On Learning Language-Invariant Representations for Universal Machine Translation »
Han Zhao · Junjie Hu · Andrej Risteski -
2020 Poster: Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid Flow Prediction »
Filipe de Avila Belbute-Peres · Thomas Economon · Zico Kolter -
2020 Poster: Certified Robustness to Label-Flipping Attacks via Randomized Smoothing »
Elan Rosenfeld · Ezra Winston · Pradeep Ravikumar · Zico Kolter -
2020 Poster: Uncertainty-Aware Lookahead Factor Models for Quantitative Investing »
Lakshay Chauhan · John Alberg · Zachary Lipton -
2020 Poster: Overfitting in adversarially robust deep learning »
Leslie Rice · Eric Wong · Zico Kolter -
2019 Poster: Domain Adaptation with Asymmetrically-Relaxed Distribution Alignment »
Yifan Wu · Ezra Winston · Divyansh Kaushik · Zachary Lipton -
2019 Poster: What is the Effect of Importance Weighting in Deep Learning? »
Jonathon Byrd · Zachary Lipton -
2019 Oral: Domain Adaptation with Asymmetrically-Relaxed Distribution Alignment »
Yifan Wu · Ezra Winston · Divyansh Kaushik · Zachary Lipton -
2019 Oral: What is the Effect of Importance Weighting in Deep Learning? »
Jonathon Byrd · Zachary Lipton -
2019 Poster: Certified Adversarial Robustness via Randomized Smoothing »
Jeremy Cohen · Elan Rosenfeld · Zico Kolter -
2019 Poster: Wasserstein Adversarial Examples via Projected Sinkhorn Iterations »
Eric Wong · Frank R Schmidt · Zico Kolter -
2019 Oral: Wasserstein Adversarial Examples via Projected Sinkhorn Iterations »
Eric Wong · Frank R Schmidt · Zico Kolter -
2019 Oral: Certified Adversarial Robustness via Randomized Smoothing »
Jeremy Cohen · Elan Rosenfeld · Zico Kolter -
2019 Poster: SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver »
Po-Wei Wang · Priya Donti · Bryan Wilder · Zico Kolter -
2019 Poster: Adversarial camera stickers: A physical camera-based attack on deep learning systems »
Juncheng Li · Frank R Schmidt · Zico Kolter -
2019 Oral: SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver »
Po-Wei Wang · Priya Donti · Bryan Wilder · Zico Kolter -
2019 Oral: Adversarial camera stickers: A physical camera-based attack on deep learning systems »
Juncheng Li · Frank R Schmidt · Zico Kolter -
2018 Poster: Detecting and Correcting for Label Shift with Black Box Predictors »
Zachary Lipton · Yu-Xiang Wang · Alexander Smola -
2018 Poster: Born Again Neural Networks »
Tommaso Furlanello · Zachary Lipton · Michael Tschannen · Laurent Itti · Anima Anandkumar -
2018 Oral: Born Again Neural Networks »
Tommaso Furlanello · Zachary Lipton · Michael Tschannen · Laurent Itti · Anima Anandkumar -
2018 Oral: Detecting and Correcting for Label Shift with Black Box Predictors »
Zachary Lipton · Yu-Xiang Wang · Alexander Smola -
2018 Poster: Provable Defenses against Adversarial Examples via the Convex Outer Adversarial Polytope »
Eric Wong · Zico Kolter -
2018 Oral: Provable Defenses against Adversarial Examples via the Convex Outer Adversarial Polytope »
Eric Wong · Zico Kolter -
2017 Poster: Input Convex Neural Networks »
Brandon Amos · Lei Xu · Zico Kolter -
2017 Poster: OptNet: Differentiable Optimization as a Layer in Neural Networks »
Brandon Amos · Zico Kolter -
2017 Poster: A Semismooth Newton Method for Fast, Generic Convex Programming »
Alnur Ali · Eric Wong · Zico Kolter -
2017 Talk: OptNet: Differentiable Optimization as a Layer in Neural Networks »
Brandon Amos · Zico Kolter -
2017 Talk: Input Convex Neural Networks »
Brandon Amos · Lei Xu · Zico Kolter -
2017 Talk: A Semismooth Newton Method for Fast, Generic Convex Programming »
Alnur Ali · Eric Wong · Zico Kolter