Timezone: »
Computational efforts in optimal transport traditionally revolvearound the squared-Euclidean cost. In this work, we choose toinvestigate the optimal transport problem between probability measureswhen the underlying metric space is non-Euclidean, or when the costfunction is understood to satisfy a least action principle,also known as a Lagrangian cost. These two generalizations are useful when connecting observations from a physical system, where the transport dynamics are influencedby the geometry of the system, such as obstacles, and allowspractitioners to incorporate a priori knowledge of theunderlying system. Examples include barriers for transport, orenforcing a certain geometry, i.e., paths must be circular.We demonstrate the effectiveness of this formulation on existingsynthetic examples in the literature, where we solve the optimaltransport problems in the absence of regularization, which is novel inthe literature. Our contributions are of computational interest, where we demonstrate the ability to efficiently compute geodesics and amortize spline-based paths. We demonstrate the effectiveness of this formulation on existing synthetic examples in the literature, where we solve the optimal transport problems in the absence of regularization.
Author Information
Aram-Alexandre Pooladian (New York University)
Carles Domingo i Enrich (New York University)
Ricky T. Q. Chen (Meta AI)
Brandon Amos (Meta)
More from the Same Authors
-
2021 : Neural Fixed-Point Acceleration for Convex Optimization »
Shobha Venkataraman · Brandon Amos -
2023 : On Convergence of Approximate Schr\"{o}dinger Bridge with Bounded Cost »
Wei Deng · Yu Chen · Tianjiao N Yang · Hengrong Du · Qi Feng · Ricky T. Q. Chen -
2023 : Koopman Constrained Policy Optimization: A Koopman operator theoretic method for differentiable optimal control in robotics »
Matthew Retchin · Brandon Amos · Steven Brunton · Shuran Song -
2023 : TaskMet: Task-Driven Metric Learning for Model Learning »
Dishank Bansal · Ricky T. Q. Chen · Mustafa Mukadam · Brandon Amos -
2023 : Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information »
Arman Zharmagambetov · Brandon Amos · Aaron Ferber · Taoan Huang · Bistra Dilkina · Yuandong Tian -
2023 : Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information »
Arman Zharmagambetov · Brandon Amos · Aaron Ferber · Taoan Huang · Bistra Dilkina · Yuandong Tian -
2023 : On optimal control and machine learning »
Brandon Amos -
2023 Poster: Meta Optimal Transport »
Brandon Amos · Giulia Luise · samuel cohen · Ievgen Redko -
2023 Poster: Multisample Flow Matching: Straightening Flows with Minibatch Couplings »
Aram-Alexandre Pooladian · Heli Ben-Hamu · Carles Domingo i Enrich · Brandon Amos · Yaron Lipman · Ricky T. Q. Chen -
2023 Poster: On Kinetic Optimal Probability Paths for Generative Models »
Neta Shaul · Ricky T. Q. Chen · Maximilian Nickel · Matthew Le · Yaron Lipman -
2023 Poster: Semi-Supervised Offline Reinforcement Learning with Action-Free Trajectories »
Qinqing Zheng · Mikael Henaff · Brandon Amos · Aditya Grover -
2023 Poster: Minimax estimation of discontinuous optimal transport maps: The semi-discrete case »
Aram-Alexandre Pooladian · Vincent Divol · Jonathan Niles-Weed -
2022 : Differentiable optimization for control and reinforcement learning »
Brandon Amos -
2022 Poster: Matching Normalizing Flows and Probability Paths on Manifolds »
Heli Ben-Hamu · samuel cohen · Joey Bose · Brandon Amos · Maximilian Nickel · Aditya Grover · Ricky T. Q. Chen · Yaron Lipman -
2022 Spotlight: Matching Normalizing Flows and Probability Paths on Manifolds »
Heli Ben-Hamu · samuel cohen · Joey Bose · Brandon Amos · Maximilian Nickel · Aditya Grover · Ricky T. Q. Chen · Yaron Lipman -
2021 Poster: On Energy-Based Models with Overparametrized Shallow Neural Networks »
Carles Domingo-Enrich · Alberto Bietti · Eric Vanden-Eijnden · Joan Bruna -
2021 Oral: On Energy-Based Models with Overparametrized Shallow Neural Networks »
Carles Domingo-Enrich · Alberto Bietti · Eric Vanden-Eijnden · Joan Bruna -
2021 Poster: CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints »
Anselm Paulus · Michal Rolinek · Vit Musil · Brandon Amos · Georg Martius -
2021 Spotlight: CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints »
Anselm Paulus · Michal Rolinek · Vit Musil · Brandon Amos · Georg Martius -
2021 Poster: Riemannian Convex Potential Maps »
samuel cohen · Brandon Amos · Yaron Lipman -
2021 Spotlight: Riemannian Convex Potential Maps »
samuel cohen · Brandon Amos · Yaron Lipman -
2020 Poster: Extra-gradient with player sampling for faster convergence in n-player games »
Samy Jelassi · Carles Domingo-Enrich · Damien Scieur · Arthur Mensch · Joan Bruna -
2020 Poster: The Differentiable Cross-Entropy Method »
Brandon Amos · Denis Yarats