Timezone: »
Recent work have shown that incorporating pre-trained multimodal representations can enhance the ability of an instruction-following agent to generalize to unseen situations. Yet training such agents often requires a dataset consisting of diverse demonstrations, which may not be available for target domains and incur a huge cost to collect. In this paper, we instead propose to utilize the knowledge captured within large vision-language models for improving the generalization capability of control agents. To this end, we present Multimodal Reward Decision Transformer (MRDT), a simple yet effective method that uses the visual-text alignment score as a reward. This reward, which adapts based on the progress towards achieving the text-specified goals, is used to train a return-conditioned policy that guides the agent towards the desired goals. We also introduce a fine-tuning scheme that adapts pre-trained multimodal models using in-domain data to improve the quality of rewards. Our experiments demonstrate that MRDT significantly improves generalization performance in test environments with unseen goals. Moreover, we introduce new metrics for evaluating the quality of multimodal rewards and show that generalization performance increases as the quality of rewards improves.
Author Information
Changyeon Kim (KAIST)
Younggyo Seo (KAIST / UC Berkeley)
Hao Liu (UC Berkeley)
Lisa Lee (Google Brain)
Jinwoo Shin (KAIST)
Honglak Lee (LG AI Research / U. Michigan)
Kimin Lee (Google)
More from the Same Authors
-
2021 : SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Adversarial Robustness »
Jongheon Jeong · Sejun Park · Minkyu Kim · Heung-Chang Lee · Doguk Kim · Jinwoo Shin -
2021 : Entropy Weighted Adversarial Training »
Minseon Kim · Jihoon Tack · Jinwoo Shin · Sung Ju Hwang -
2021 : Consistency Regularization for Adversarial Robustness »
Jihoon Tack · Sihyun Yu · Jongheon Jeong · Minseon Kim · Sung Ju Hwang · Jinwoo Shin -
2021 : Learning Action Translator for Meta Reinforcement Learning on Sparse-Reward Tasks »
Yijie Guo · Qiucheng Wu · Honglak Lee -
2022 : Multimodal Masked Autoencoders Learn Transferable Representations »
Xinyang Geng · Hao Liu · Lisa Lee · Dale Schuurmans · Sergey Levine · Pieter Abbeel -
2023 : Few-shot Anomaly Detection via Personalization »
Sangkyung Kwak · Jongheon Jeong · Hankook Lee · Woohyuck Kim · Jinwoo Shin -
2023 : Bias-to-Text: Debiasing Unknown Visual Biases by Language Interpretation »
Younghyun Kim · Sangwoo Mo · Minkyu Kim · Kyungmin Lee · Jaeho Lee · Jinwoo Shin -
2023 : Breaking the Spurious Causality of Conditional Generation via Fairness Intervention with Corrective Sampling »
Jun Hyun Nam · Sangwoo Mo · Jaeho Lee · Jinwoo Shin -
2023 : Algorithms for Optimal Adaptation of Diffusion Models to Reward Functions »
Krishnamurthy Dvijotham · Shayegan Omidshafiei · Kimin Lee · Katie Collins · Deepak Ramachandran · Adrian Weller · Mohammad Ghavamzadeh · Milad Nasresfahani · Ying Fan · Jeremiah Liu -
2023 : Collaborative Score Distillation for Consistent Visual Synthesis »
Subin Kim · Kyungmin Lee · June Suk Choi · Jongheon Jeong · Kihyuk Sohn · Jinwoo Shin -
2023 : Blockwise Parallel Transformer for Long Context Large Models »
Hao Liu · Pieter Abbeel -
2023 : Semi-supervised Tabular Classification via In-context Learning of Large Language Models »
Jaehyun Nam · Woomin Song · Seong Hyeon Park · Jihoon Tack · Sukmin Yun · Jaehyung Kim · Jinwoo Shin -
2023 : Towards Safe Self-Distillation of Internet-Scale Text-to-Image Diffusion Models »
Sanghyun Kim · Seohyeon Jung · Balhae Kim · Moonseok Choi · Jinwoo Shin · Juho Lee -
2023 : Learning Higher Order Skills that Efficiently Compose »
Anthony Liu · Dong Ki Kim · Sungryull Sohn · Honglak Lee -
2023 : Hierarchical Decomposition Framework for Feasibility-hard Combinatorial Optimization »
Hanbum Ko · Minu Kim · Han-Seul Jeong · Sunghoon Hong · Deunsol Yoon · Youngjoon Park · Woohyung Lim · Honglak Lee · Moontae Lee · Kanghoon Lee · Sungbin Lim · Sungryull Sohn -
2023 : Mixed-Curvature Transformers for Graph Representation Learning »
Sungjun Cho · Seunghyuk Cho · Sungwoo Park · Hankook Lee · Honglak Lee · Moontae Lee -
2023 Poster: Prefer to Classify: Improving Text Classifiers via Auxiliary Preference Learning »
Jaehyung Kim · Jinwoo Shin · Dongyeop Kang -
2023 Poster: Modality-Agnostic Variational Compression of Implicit Neural Representations »
Jonathan Richard Schwarz · Jihoon Tack · Yee-Whye Teh · Jaeho Lee · Jinwoo Shin -
2023 Poster: Controllability-Aware Unsupervised Skill Discovery »
Seohong Park · Kimin Lee · Youngwoon Lee · Pieter Abbeel -
2023 Poster: Go Beyond Imagination: Maximizing Episodic Reachability with World Models »
Yao Fu · Run Peng · Honglak Lee -
2023 Poster: Emergent Agentic Transformer from Chain of Hindsight Experience »
Hao Liu · Pieter Abbeel -
2023 Poster: Multi-View Masked World Models for Visual Robotic Manipulation »
Younggyo Seo · Junsu Kim · Stephen James · Kimin Lee · Jinwoo Shin · Pieter Abbeel -
2022 : Multimodal Masked Autoencoders Learn Transferable Representations »
Xinyang Geng · Hao Liu · Lisa Lee · Dale Schuurmans · Sergey Levine · Pieter Abbeel -
2022 Poster: Reinforcement Learning with Action-Free Pre-Training from Videos »
Younggyo Seo · Kimin Lee · Stephen James · Pieter Abbeel -
2022 Poster: TSPipe: Learn from Teacher Faster with Pipelines »
Hwijoon Lim · Yechan Kim · Sukmin Yun · Jinwoo Shin · Dongsu Han -
2022 Spotlight: TSPipe: Learn from Teacher Faster with Pipelines »
Hwijoon Lim · Yechan Kim · Sukmin Yun · Jinwoo Shin · Dongsu Han -
2022 Spotlight: Reinforcement Learning with Action-Free Pre-Training from Videos »
Younggyo Seo · Kimin Lee · Stephen James · Pieter Abbeel -
2022 Poster: Disentangling Sources of Risk for Distributional Multi-Agent Reinforcement Learning »
Kyunghwan Son · Junsu Kim · Sungsoo Ahn · Roben Delos Reyes · Yung Yi · Jinwoo Shin -
2022 Poster: Time Is MattEr: Temporal Self-supervision for Video Transformers »
Sukmin Yun · Jaehyung Kim · Dongyoon Han · Hwanjun Song · Jung-Woo Ha · Jinwoo Shin -
2022 Spotlight: Disentangling Sources of Risk for Distributional Multi-Agent Reinforcement Learning »
Kyunghwan Son · Junsu Kim · Sungsoo Ahn · Roben Delos Reyes · Yung Yi · Jinwoo Shin -
2022 Spotlight: Time Is MattEr: Temporal Self-supervision for Video Transformers »
Sukmin Yun · Jaehyung Kim · Dongyoon Han · Hwanjun Song · Jung-Woo Ha · Jinwoo Shin -
2021 : Contrastive Learning for Novelty Detection »
Jinwoo Shin -
2021 Poster: Self-Improved Retrosynthetic Planning »
Junsu Kim · Sungsoo Ahn · Hankook Lee · Jinwoo Shin -
2021 Spotlight: Self-Improved Retrosynthetic Planning »
Junsu Kim · Sungsoo Ahn · Hankook Lee · Jinwoo Shin -
2021 Poster: Learning to Generate Noise for Multi-Attack Robustness »
Divyam Madaan · Jinwoo Shin · Sung Ju Hwang -
2021 Spotlight: Learning to Generate Noise for Multi-Attack Robustness »
Divyam Madaan · Jinwoo Shin · Sung Ju Hwang -
2021 Poster: APS: Active Pretraining with Successor Features »
Hao Liu · Pieter Abbeel -
2021 Oral: APS: Active Pretraining with Successor Features »
Hao Liu · Pieter Abbeel -
2021 Poster: Learning to Weight Imperfect Demonstrations »
Yunke Wang · Chang Xu · Bo Du · Honglak Lee -
2021 Poster: Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks »
Sungryull Sohn · Sungtae Lee · Jongwook Choi · Harm van Seijen · Mehdi Fatemi · Honglak Lee -
2021 Poster: Variational Empowerment as Representation Learning for Goal-Conditioned Reinforcement Learning »
Jongwook Choi · Archit Sharma · Honglak Lee · Sergey Levine · Shixiang Gu -
2021 Spotlight: Variational Empowerment as Representation Learning for Goal-Conditioned Reinforcement Learning »
Jongwook Choi · Archit Sharma · Honglak Lee · Sergey Levine · Shixiang Gu -
2021 Spotlight: Learning to Weight Imperfect Demonstrations »
Yunke Wang · Chang Xu · Bo Du · Honglak Lee -
2021 Spotlight: Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks »
Sungryull Sohn · Sungtae Lee · Jongwook Choi · Harm van Seijen · Mehdi Fatemi · Honglak Lee -
2021 Poster: State Entropy Maximization with Random Encoders for Efficient Exploration »
Younggyo Seo · Lili Chen · Jinwoo Shin · Honglak Lee · Pieter Abbeel · Kimin Lee -
2021 Spotlight: State Entropy Maximization with Random Encoders for Efficient Exploration »
Younggyo Seo · Lili Chen · Jinwoo Shin · Honglak Lee · Pieter Abbeel · Kimin Lee -
2020 Poster: Self-supervised Label Augmentation via Input Transformations »
Hankook Lee · Sung Ju Hwang · Jinwoo Shin -
2020 Poster: Context-aware Dynamics Model for Generalization in Model-Based Reinforcement Learning »
Kimin Lee · Younggyo Seo · Seunghyun Lee · Honglak Lee · Jinwoo Shin -
2020 Poster: Polynomial Tensor Sketch for Element-wise Function of Low-Rank Matrix »
Insu Han · Haim Avron · Jinwoo Shin -
2020 Poster: Learning What to Defer for Maximum Independent Sets »
Sungsoo Ahn · Younggyo Seo · Jinwoo Shin -
2020 Poster: Adversarial Neural Pruning with Latent Vulnerability Suppression »
Divyam Madaan · Jinwoo Shin · Sung Ju Hwang -
2019 Poster: Learning Latent Dynamics for Planning from Pixels »
Danijar Hafner · Timothy Lillicrap · Ian Fischer · Ruben Villegas · David Ha · Honglak Lee · James Davidson -
2019 Poster: Spectral Approximate Inference »
Sejun Park · Eunho Yang · Se-Young Yun · Jinwoo Shin -
2019 Poster: Robust Inference via Generative Classifiers for Handling Noisy Labels »
Kimin Lee · Sukmin Yun · Kibok Lee · Honglak Lee · Bo Li · Jinwoo Shin -
2019 Poster: Learning What and Where to Transfer »
Yunhun Jang · Hankook Lee · Sung Ju Hwang · Jinwoo Shin -
2019 Poster: Similarity of Neural Network Representations Revisited »
Simon Kornblith · Mohammad Norouzi · Honglak Lee · Geoffrey Hinton -
2019 Oral: Similarity of Neural Network Representations Revisited »
Simon Kornblith · Mohammad Norouzi · Honglak Lee · Geoffrey Hinton -
2019 Oral: Spectral Approximate Inference »
Sejun Park · Eunho Yang · Se-Young Yun · Jinwoo Shin -
2019 Oral: Robust Inference via Generative Classifiers for Handling Noisy Labels »
Kimin Lee · Sukmin Yun · Kibok Lee · Honglak Lee · Bo Li · Jinwoo Shin -
2019 Oral: Learning What and Where to Transfer »
Yunhun Jang · Hankook Lee · Sung Ju Hwang · Jinwoo Shin -
2019 Oral: Learning Latent Dynamics for Planning from Pixels »
Danijar Hafner · Timothy Lillicrap · Ian Fischer · Ruben Villegas · David Ha · Honglak Lee · James Davidson -
2019 Poster: Training CNNs with Selective Allocation of Channels »
Jongheon Jeong · Jinwoo Shin -
2019 Poster: Taming MAML: Efficient unbiased meta-reinforcement learning »
Hao Liu · Richard Socher · Caiming Xiong -
2019 Oral: Training CNNs with Selective Allocation of Channels »
Jongheon Jeong · Jinwoo Shin -
2019 Oral: Taming MAML: Efficient unbiased meta-reinforcement learning »
Hao Liu · Richard Socher · Caiming Xiong -
2018 Poster: Self-Imitation Learning »
Junhyuk Oh · Yijie Guo · Satinder Singh · Honglak Lee -
2018 Oral: Self-Imitation Learning »
Junhyuk Oh · Yijie Guo · Satinder Singh · Honglak Lee -
2018 Poster: Bucket Renormalization for Approximate Inference »
Sungsoo Ahn · Michael Chertkov · Adrian Weller · Jinwoo Shin -
2018 Oral: Bucket Renormalization for Approximate Inference »
Sungsoo Ahn · Michael Chertkov · Adrian Weller · Jinwoo Shin -
2018 Poster: Hierarchical Long-term Video Prediction without Supervision »
Nevan Wichers · Ruben Villegas · Dumitru Erhan · Honglak Lee -
2018 Oral: Hierarchical Long-term Video Prediction without Supervision »
Nevan Wichers · Ruben Villegas · Dumitru Erhan · Honglak Lee -
2017 Poster: Zero-Shot Task Generalization with Multi-Task Deep Reinforcement Learning »
Junhyuk Oh · Satinder Singh · Honglak Lee · Pushmeet Kohli -
2017 Talk: Zero-Shot Task Generalization with Multi-Task Deep Reinforcement Learning »
Junhyuk Oh · Satinder Singh · Honglak Lee · Pushmeet Kohli -
2017 Poster: Faster Greedy MAP Inference for Determinantal Point Processes »
Insu Han · Prabhanjan Kambadur · Kyoungsoo Park · Jinwoo Shin -
2017 Poster: Learning to Generate Long-term Future via Hierarchical Prediction »
Ruben Villegas · Jimei Yang · Yuliang Zou · Sungryull Sohn · Xunyu Lin · Honglak Lee -
2017 Poster: Confident Multiple Choice Learning »
Kimin Lee · Changho Hwang · KyoungSoo Park · Jinwoo Shin -
2017 Talk: Learning to Generate Long-term Future via Hierarchical Prediction »
Ruben Villegas · Jimei Yang · Yuliang Zou · Sungryull Sohn · Xunyu Lin · Honglak Lee -
2017 Talk: Confident Multiple Choice Learning »
Kimin Lee · Changho Hwang · KyoungSoo Park · Jinwoo Shin -
2017 Talk: Faster Greedy MAP Inference for Determinantal Point Processes »
Insu Han · Prabhanjan Kambadur · Kyoungsoo Park · Jinwoo Shin