Timezone: »
Structured state space sequence (S4) models have recently achieved state-of-the-art performance on long-range sequence modeling tasks. These models also have fast inference speeds and parallelisable training, making them potentially useful in many reinforcement learning settings. We propose a modification to a variant of S4 that enables us to initialise and reset the hidden state in parallel, allowing us to tackle reinforcement learning tasks. We show that our modified architecture runs asymptotically faster than Transformers and performs better than LSTM models on a simple memory-based task. Then, by leveraging the model’s ability to handle long-range sequences, we achieve strong performance on a challenging meta-learning task in which the agent is given a randomly-sampled continuous control environment, combined with a randomly-sampled linear projection of the environment's observations and actions. Furthermore, we show the resulting model can adapt to out-of-distribution held-out tasks. Overall, the results presented in this paper suggest that the S4 models are a strong contender for the default architecture used for in-context reinforcement learning.
Author Information
Christopher Lu (University of Oxford)
Yannick Schroecker (DeepMind)
Albert Gu (Carnegie Mellon University, DeepMind)
Emilio Parisotto (Carnegie Mellon University)
Jakob Foerster (Oxford university)
Jakob Foerster started as an Associate Professor at the department of engineering science at the University of Oxford in the fall of 2021. During his PhD at Oxford he helped bring deep multi-agent reinforcement learning to the forefront of AI research and interned at Google Brain, OpenAI, and DeepMind. After his PhD he worked as a research scientist at Facebook AI Research in California, where he continued doing foundational work. He was the lead organizer of the first Emergent Communication workshop at NeurIPS in 2017, which he has helped organize ever since and was awarded a prestigious CIFAR AI chair in 2019. His past work addresses how AI agents can learn to cooperate and communicate with other agents, most recently he has been developing and addressing the zero-shot coordination problem setting, a crucial step towards human-AI coordination.
Satinder Singh (DeepMind)
Feryal Behbahani (Google DeepMind)
More from the Same Authors
-
2021 : Discovering Diverse Nearly Optimal Policies with Successor Features »
Tom Zahavy · Brendan O'Donoghue · Andre Barreto · Sebastian Flennerhag · Vlad Mnih · Satinder Singh -
2021 : Reward is enough for convex MDPs »
Tom Zahavy · Brendan O'Donoghue · Guillaume Desjardins · Satinder Singh -
2022 : Adversarial Cheap Talk »
Christopher Lu · Timon Willi · Alistair Letcher · Jakob Foerster -
2022 : Illusionary Attacks on Sequential Decision Makers and Countermeasures »
Tim Franzmeyer · Joao Henriques · Jakob Foerster · Phil Torr · Adel Bibi · Christian Schroeder -
2022 : Towards a General Purpose CNN for Long Range Dependencies in $N$D »
David Romero · David Knigge · Albert Gu · Erik Bekkers · Efstratios Gavves · Jakub Tomczak · Mark Hoogendoorn -
2022 : Discovered Policy Optimisation »
Christopher Lu · Jakub Grudzien Kuba · Alistair Letcher · Luke Metz · Christian Schroeder · Jakob Foerster -
2022 : Adversarial Cheap Talk »
Christopher Lu · Timon Willi · Alistair Letcher · Jakob Foerster -
2022 : Adversarial Cheap Talk »
Christopher Lu · Timon Willi · Alistair Letcher · Jakob Foerster -
2022 : Adversarial Cheap Talk »
Christopher Lu · Timon Willi · Alistair Letcher · Jakob Foerster -
2023 : Illusory Attacks: Detectability Matters in Adversarial Attacks on Sequential Decision-Makers »
Tim Franzmeyer · Stephen Mcaleer · Joao Henriques · Jakob Foerster · Phil Torr · Adel Bibi · Christian Schroeder -
2023 : Analyzing the Sample Complexity of Model-Free Opponent Shaping »
Kitty Fung · Qizhen Zhang · Christopher Lu · Timon Willi · Jakob Foerster -
2023 : Who to imitate: Imitating desired behavior from diverse multi-agent datasets »
Tim Franzmeyer · Jakob Foerster · Edith Elkind · Phil Torr · Joao Henriques -
2023 Oral: Resurrecting Recurrent Neural Networks for Long Sequences »
Antonio Orvieto · Samuel Smith · Albert Gu · Anushan Fernando · Caglar Gulcehre · Razvan Pascanu · Soham De -
2023 Poster: Learning Intuitive Policies Using Action Features »
Mingwei Ma · Jizhou Liu · Samuel Sokota · Max Kleiman-Weiner · Jakob Foerster -
2023 Poster: Resurrecting Recurrent Neural Networks for Long Sequences »
Antonio Orvieto · Samuel Smith · Albert Gu · Anushan Fernando · Caglar Gulcehre · Razvan Pascanu · Soham De -
2023 Oral: Human-Timescale Adaptation in an Open-Ended Task Space »
Jakob Bauer · Kate Baumli · Feryal Behbahani · Avishkar Bhoopchand · Natalie Bradley-Schmieg · Michael Chang · Natalie Clay · Adrian Collister · Vibhavari Dasagi · Lucy Gonzalez · Karol Gregor · Edward Hughes · Sheleem Kashem · Maria Loks-Thompson · Hannah Openshaw · Jack Parker-Holder · Shreya Pathak · Nicolas Perez-Nieves · Nemanja Rakicevic · Tim Rocktäschel · Yannick Schroecker · Satinder Singh · Jakub Sygnowski · Karl Tuyls · Sarah York · Alexander Zacherl · Lei Zhang -
2023 Poster: ReLOAD: Reinforcement Learning with Optimistic Ascent-Descent for Last-Iterate Convergence in Constrained MDPs »
Ted Moskovitz · Brendan O'Donoghue · Vivek Veeriah · Sebastian Flennerhag · Satinder Singh · Tom Zahavy -
2023 Poster: Adversarial Cheap Talk »
Christopher Lu · Timon Willi · Alistair Letcher · Jakob Foerster -
2023 Poster: Human-Timescale Adaptation in an Open-Ended Task Space »
Jakob Bauer · Kate Baumli · Feryal Behbahani · Avishkar Bhoopchand · Natalie Bradley-Schmieg · Michael Chang · Natalie Clay · Adrian Collister · Vibhavari Dasagi · Lucy Gonzalez · Karol Gregor · Edward Hughes · Sheleem Kashem · Maria Loks-Thompson · Hannah Openshaw · Jack Parker-Holder · Shreya Pathak · Nicolas Perez-Nieves · Nemanja Rakicevic · Tim Rocktäschel · Yannick Schroecker · Satinder Singh · Jakub Sygnowski · Karl Tuyls · Sarah York · Alexander Zacherl · Lei Zhang -
2022 : Adversarial Cheap Talk »
Christopher Lu · Timon Willi · Alistair Letcher · Jakob Foerster -
2022 Poster: Evolving Curricula with Regret-Based Environment Design »
Jack Parker-Holder · Minqi Jiang · Michael Dennis · Mikayel Samvelyan · Jakob Foerster · Edward Grefenstette · Tim Rocktäschel -
2022 Poster: COLA: Consistent Learning with Opponent-Learning Awareness »
Timon Willi · Alistair Letcher · Johannes Treutlein · Jakob Foerster -
2022 Poster: It’s Raw! Audio Generation with State-Space Models »
Karan Goel · Albert Gu · Chris Donahue · Christopher Re -
2022 Spotlight: Evolving Curricula with Regret-Based Environment Design »
Jack Parker-Holder · Minqi Jiang · Michael Dennis · Mikayel Samvelyan · Jakob Foerster · Edward Grefenstette · Tim Rocktäschel -
2022 Spotlight: COLA: Consistent Learning with Opponent-Learning Awareness »
Timon Willi · Alistair Letcher · Johannes Treutlein · Jakob Foerster -
2022 Oral: It’s Raw! Audio Generation with State-Space Models »
Karan Goel · Albert Gu · Chris Donahue · Christopher Re -
2022 Poster: Communicating via Markov Decision Processes »
Samuel Sokota · Christian Schroeder · Maximilian Igl · Luisa Zintgraf · Phil Torr · Martin Strohmeier · Zico Kolter · Shimon Whiteson · Jakob Foerster -
2022 Poster: Model-Value Inconsistency as a Signal for Epistemic Uncertainty »
Angelos Filos · Eszter Vértes · Zita Marinho · Gregory Farquhar · Diana Borsa · Abe Friesen · Feryal Behbahani · Tom Schaul · Andre Barreto · Simon Osindero -
2022 Spotlight: Communicating via Markov Decision Processes »
Samuel Sokota · Christian Schroeder · Maximilian Igl · Luisa Zintgraf · Phil Torr · Martin Strohmeier · Zico Kolter · Shimon Whiteson · Jakob Foerster -
2022 Spotlight: Model-Value Inconsistency as a Signal for Epistemic Uncertainty »
Angelos Filos · Eszter Vértes · Zita Marinho · Gregory Farquhar · Diana Borsa · Abe Friesen · Feryal Behbahani · Tom Schaul · Andre Barreto · Simon Osindero -
2022 Poster: Model-Free Opponent Shaping »
Christopher Lu · Timon Willi · Christian Schroeder de Witt · Jakob Foerster -
2022 Poster: Mirror Learning: A Unifying Framework of Policy Optimisation »
Jakub Grudzien Kuba · Christian Schroeder de Witt · Jakob Foerster -
2022 Poster: Generalized Beliefs for Cooperative AI »
Darius Muglich · Luisa Zintgraf · Christian Schroeder de Witt · Shimon Whiteson · Jakob Foerster -
2022 Spotlight: Generalized Beliefs for Cooperative AI »
Darius Muglich · Luisa Zintgraf · Christian Schroeder de Witt · Shimon Whiteson · Jakob Foerster -
2022 Spotlight: Model-Free Opponent Shaping »
Christopher Lu · Timon Willi · Christian Schroeder de Witt · Jakob Foerster -
2022 Spotlight: Mirror Learning: A Unifying Framework of Policy Optimisation »
Jakub Grudzien Kuba · Christian Schroeder de Witt · Jakob Foerster -
2021 Workshop: ICML 2021 Workshop on Unsupervised Reinforcement Learning »
Feryal Behbahani · Joelle Pineau · Lerrel Pinto · Roberta Raileanu · Aravind Srinivas · Denis Yarats · Amy Zhang -
2021 Poster: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections »
Ines Chami · Albert Gu · Dat P Nguyen · Christopher Re -
2021 Spotlight: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections »
Ines Chami · Albert Gu · Dat P Nguyen · Christopher Re -
2021 Poster: Off-Belief Learning »
Hengyuan Hu · Adam Lerer · Brandon Cui · Luis Pineda · Noam Brown · Jakob Foerster -
2021 Spotlight: Off-Belief Learning »
Hengyuan Hu · Adam Lerer · Brandon Cui · Luis Pineda · Noam Brown · Jakob Foerster -
2021 Poster: Catformer: Designing Stable Transformers via Sensitivity Analysis »
Jared Quincy Davis · Albert Gu · Krzysztof Choromanski · Tri Dao · Christopher Re · Chelsea Finn · Percy Liang -
2021 Poster: On Proximal Policy Optimization's Heavy-tailed Gradients »
Saurabh Garg · Joshua Zhanson · Emilio Parisotto · Adarsh Prasad · Zico Kolter · Zachary Lipton · Sivaraman Balakrishnan · Ruslan Salakhutdinov · Pradeep Ravikumar -
2021 Poster: Trajectory Diversity for Zero-Shot Coordination »
Andrei Lupu · Brandon Cui · Hengyuan Hu · Jakob Foerster -
2021 Spotlight: Catformer: Designing Stable Transformers via Sensitivity Analysis »
Jared Quincy Davis · Albert Gu · Krzysztof Choromanski · Tri Dao · Christopher Re · Chelsea Finn · Percy Liang -
2021 Spotlight: On Proximal Policy Optimization's Heavy-tailed Gradients »
Saurabh Garg · Joshua Zhanson · Emilio Parisotto · Adarsh Prasad · Zico Kolter · Zachary Lipton · Sivaraman Balakrishnan · Ruslan Salakhutdinov · Pradeep Ravikumar -
2021 Spotlight: Trajectory Diversity for Zero-Shot Coordination »
Andrei Lupu · Brandon Cui · Hengyuan Hu · Jakob Foerster -
2021 Poster: A New Formalism, Method and Open Issues for Zero-Shot Coordination »
Johannes Treutlein · Michael Dennis · Caspar Oesterheld · Jakob Foerster -
2021 Spotlight: A New Formalism, Method and Open Issues for Zero-Shot Coordination »
Johannes Treutlein · Michael Dennis · Caspar Oesterheld · Jakob Foerster -
2020 Poster: “Other-Play” for Zero-Shot Coordination »
Hengyuan Hu · Alexander Peysakhovich · Adam Lerer · Jakob Foerster -
2020 Poster: What Can Learned Intrinsic Rewards Capture? »
Zeyu Zheng · Junhyuk Oh · Matteo Hessel · Zhongwen Xu · Manuel Kroiss · Hado van Hasselt · David Silver · Satinder Singh -
2020 Poster: Improving the Gating Mechanism of Recurrent Neural Networks »
Albert Gu · Caglar Gulcehre · Thomas Paine · Matthew Hoffman · Razvan Pascanu -
2019 Poster: Learning Fast Algorithms for Linear Transforms Using Butterfly Factorizations »
Tri Dao · Albert Gu · Matthew Eichhorn · Atri Rudra · Christopher Re -
2019 Poster: Bayesian Action Decoder for Deep Multi-Agent Reinforcement Learning »
Jakob Foerster · Francis Song · Edward Hughes · Neil Burch · Iain Dunning · Shimon Whiteson · Matthew Botvinick · Michael Bowling -
2019 Oral: Bayesian Action Decoder for Deep Multi-Agent Reinforcement Learning »
Jakob Foerster · Francis Song · Edward Hughes · Neil Burch · Iain Dunning · Shimon Whiteson · Matthew Botvinick · Michael Bowling -
2019 Oral: Learning Fast Algorithms for Linear Transforms Using Butterfly Factorizations »
Tri Dao · Albert Gu · Matthew Eichhorn · Atri Rudra · Christopher Re -
2019 Poster: A Baseline for Any Order Gradient Estimation in Stochastic Computation Graphs »
Jingkai Mao · Jakob Foerster · Tim Rocktäschel · Maruan Al-Shedivat · Gregory Farquhar · Shimon Whiteson -
2019 Oral: A Baseline for Any Order Gradient Estimation in Stochastic Computation Graphs »
Jingkai Mao · Jakob Foerster · Tim Rocktäschel · Maruan Al-Shedivat · Gregory Farquhar · Shimon Whiteson -
2019 Poster: A Kernel Theory of Modern Data Augmentation »
Tri Dao · Albert Gu · Alexander J Ratner · Virginia Smith · Christopher De Sa · Christopher Re -
2019 Oral: A Kernel Theory of Modern Data Augmentation »
Tri Dao · Albert Gu · Alexander J Ratner · Virginia Smith · Christopher De Sa · Christopher Re -
2018 Poster: The Mechanics of n-Player Differentiable Games »
David Balduzzi · Sebastien Racaniere · James Martens · Jakob Foerster · Karl Tuyls · Thore Graepel -
2018 Poster: Representation Tradeoffs for Hyperbolic Embeddings »
Frederic Sala · Christopher De Sa · Albert Gu · Christopher Re -
2018 Poster: QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning »
Tabish Rashid · Mikayel Samvelyan · Christian Schroeder · Gregory Farquhar · Jakob Foerster · Shimon Whiteson -
2018 Oral: Representation Tradeoffs for Hyperbolic Embeddings »
Frederic Sala · Christopher De Sa · Albert Gu · Christopher Re -
2018 Oral: The Mechanics of n-Player Differentiable Games »
David Balduzzi · Sebastien Racaniere · James Martens · Jakob Foerster · Karl Tuyls · Thore Graepel -
2018 Oral: QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning »
Tabish Rashid · Mikayel Samvelyan · Christian Schroeder · Gregory Farquhar · Jakob Foerster · Shimon Whiteson -
2018 Poster: DiCE: The Infinitely Differentiable Monte Carlo Estimator »
Jakob Foerster · Gregory Farquhar · Maruan Al-Shedivat · Tim Rocktäschel · Eric Xing · Shimon Whiteson -
2018 Oral: DiCE: The Infinitely Differentiable Monte Carlo Estimator »
Jakob Foerster · Gregory Farquhar · Maruan Al-Shedivat · Tim Rocktäschel · Eric Xing · Shimon Whiteson -
2017 Poster: Stabilising Experience Replay for Deep Multi-Agent Reinforcement Learning »
Jakob Foerster · Nantas Nardelli · Gregory Farquhar · Triantafyllos Afouras · Phil Torr · Pushmeet Kohli · Shimon Whiteson -
2017 Talk: Stabilising Experience Replay for Deep Multi-Agent Reinforcement Learning »
Jakob Foerster · Nantas Nardelli · Gregory Farquhar · Triantafyllos Afouras · Phil Torr · Pushmeet Kohli · Shimon Whiteson -
2017 Poster: Input Switched Affine Networks: An RNN Architecture Designed for Interpretability »
Jakob Foerster · Justin Gilmer · Jan Chorowski · Jascha Sohl-Dickstein · David Sussillo -
2017 Talk: Input Switched Affine Networks: An RNN Architecture Designed for Interpretability »
Jakob Foerster · Justin Gilmer · Jan Chorowski · Jascha Sohl-Dickstein · David Sussillo