Timezone: »
Noise injection and data augmentation strategies have been effective for enhancing the generalisation and robustness of neural networks (NNs). Certain types of noise such as label smoothing and MixUp have also been shown to improve calibration. Since noise can be added in various stages of the NN's training, it motivates the question of when and where the noise is the most effective. We study a variety of noise types to determine how much they improve calibration and generalisation, and under what conditions. More specifically we evaluate various noise-injection strategies in both in-distribution (ID) and out-of-distribution (OOD) scenarios.The findings highlight that activation noise was the most transferable and effective in improving generalisation, while input augmentation noise was prominent in improving calibration on OOD but not necessarily ID data.
Author Information
Martin Ferianc (University College London, University of London)
Ondrej Bohdal (University of Edinburgh)
Timothy Hospedales (Samsung AI Centre / University of Edinburgh)
Miguel Rodrigues (University College London)
More from the Same Authors
-
2021 : Characterizing the Generalization Error of Gibbs Algorithm with Symmetrized KL information »
Gholamali Aminian · Yuheng Bu · Laura Toni · Miguel Rodrigues · Gregory Wornell -
2022 : Attacking Adversarial Defences by Smoothing the Loss Landscape »
Panagiotis Eustratiadis · Henry Gouk · Da Li · Timothy Hospedales -
2022 : HyperInvariances: Amortizing Invariance Learning »
Ruchika Chavhan · Henry Gouk · Jan Stuehmer · Timothy Hospedales -
2022 : Feed-Forward Source-Free Latent Domain Adaptation via Cross-Attention »
Ondrej Bohdal · Da Li · Xu Hu · Timothy Hospedales -
2023 : Evaluating the Evaluators: Are Current Few-Shot Learning Benchmarks Fit for Purpose? »
LuĂsa Shimabucoro · Timothy Hospedales · Henry Gouk -
2023 : Why Do Self-Supervised Models Transfer? On Data Augmentation and Feature Properties »
Linus Ericsson · Henry Gouk · Timothy Hospedales -
2022 Poster: Loss Function Learning for Domain Generalization by Implicit Gradient »
Boyan Gao · Henry Gouk · Yongxin Yang · Timothy Hospedales -
2022 Poster: Fisher SAM: Information Geometry and Sharpness Aware Minimisation »
Minyoung Kim · Da Li · Xu Hu · Timothy Hospedales -
2022 Spotlight: Fisher SAM: Information Geometry and Sharpness Aware Minimisation »
Minyoung Kim · Da Li · Xu Hu · Timothy Hospedales -
2022 Spotlight: Loss Function Learning for Domain Generalization by Implicit Gradient »
Boyan Gao · Henry Gouk · Yongxin Yang · Timothy Hospedales -
2021 Poster: Blind Pareto Fairness and Subgroup Robustness »
Natalia Martinez Gil · Martin Bertran · Afroditi Papadaki · Miguel Rodrigues · Guillermo Sapiro -
2021 Spotlight: Blind Pareto Fairness and Subgroup Robustness »
Natalia Martinez Gil · Martin Bertran · Afroditi Papadaki · Miguel Rodrigues · Guillermo Sapiro -
2021 Poster: Weight-covariance alignment for adversarially robust neural networks »
Panagiotis Eustratiadis · Henry Gouk · Da Li · Timothy Hospedales -
2021 Spotlight: Weight-covariance alignment for adversarially robust neural networks »
Panagiotis Eustratiadis · Henry Gouk · Da Li · Timothy Hospedales -
2019 Poster: Analogies Explained: Towards Understanding Word Embeddings »
Carl Allen · Timothy Hospedales -
2019 Oral: Analogies Explained: Towards Understanding Word Embeddings »
Carl Allen · Timothy Hospedales -
2019 Poster: Adversarially Learned Representations for Information Obfuscation and Inference »
Martin A Bertran · Natalia Martinez Gil · Afroditi Papadaki · Qiang Qiu · Miguel Rodrigues · Galen Reeves · Guillermo Sapiro -
2019 Oral: Adversarially Learned Representations for Information Obfuscation and Inference »
Martin A Bertran · Natalia Martinez Gil · Afroditi Papadaki · Qiang Qiu · Miguel Rodrigues · Galen Reeves · Guillermo Sapiro -
2019 Poster: Feature-Critic Networks for Heterogeneous Domain Generalization »
Yiying Li · Yongxin Yang · Wei Zhou · Timothy Hospedales -
2019 Oral: Feature-Critic Networks for Heterogeneous Domain Generalization »
Yiying Li · Yongxin Yang · Wei Zhou · Timothy Hospedales