Timezone: »
Notions of counterfactual invariance have proven essential for predictors that are fair, robust, and generalizable in the real world. We propose simple graphical criteria that yield a sufficient condition for a predictor to be counterfactually invariant in terms of (conditional independence in) the observational distribution. Any predictor that satisfies our criterion is provably counterfactually invariant. In order to learn such predictors, we propose a model-agnostic framework, called Counterfactual Invariance Prediction (CIP), building on a kernel-based conditional dependence measure called Hilbert-Schmidt Conditional Independence Criterion (HSCIC). Our experimental results demonstrate the effectiveness of CIP in enforcing counterfactual invariance across various simulated and real-world datasets including scalar and multi-variate settings.
Author Information
Francesco Quinzan (University of Oxford)
Cecilia Casolo (Technische Universität München)
Krikamol Muandet (CISPA--Helmholtz Center for Information Security)
Yucen Luo (Max Planck Institute for Intelligent Systems, Max-Planck Institute)
Niki Kilbertus (TUM & Helmholtz AI)
More from the Same Authors
-
2021 : A Survey on Deep Learning of Potential Outcomes From a Social Science Perspective »
Bernard Koch · Niki Kilbertus -
2023 : Diffusion Based Causal Representation Learning »
Amir Mohammad Karimi Mamaghan · Francesco Quinzan · Andrea Dittadi · Stefan Bauer -
2023 : Learning Counterfactually Invariant Predictors »
Francesco Quinzan · Cecilia Casolo · Krikamol Muandet · Yucen Luo · Niki Kilbertus -
2023 : Fast Feature Selection with Fairness Constraints »
Francesco Quinzan · Rajiv Khanna · Moshik Hershcovitch · Sarel Cohen · Daniel Waddington · Tobias Friedrich · Michael Mahoney -
2023 Poster: On the Relationship Between Explanation and Prediction: A Causal View »
Amir-Hossein Karimi · Krikamol Muandet · Simon Kornblith · Bernhard Schölkopf · Been Kim -
2023 Oral: Sequential Underspecified Instrument Selection for Cause-Effect Estimation »
Elisabeth Ailer · Jason Hartford · Niki Kilbertus -
2023 Poster: DRCFS: Doubly Robust Causal Feature Selection »
Francesco Quinzan · Ashkan Soleymani · Patrick Jaillet · Cristian R. Rojas · Stefan Bauer -
2023 Poster: Predicting Ordinary Differential Equations with Transformers »
Sören Becker · Michal Klein · Alexander Neitz · Giambattista Parascandolo · Niki Kilbertus -
2023 Poster: Sequential Underspecified Instrument Selection for Cause-Effect Estimation »
Elisabeth Ailer · Jason Hartford · Niki Kilbertus -
2022 Poster: Functional Generalized Empirical Likelihood Estimation for Conditional Moment Restrictions »
Heiner Kremer · Jia-Jie Zhu · Krikamol Muandet · Bernhard Schölkopf -
2022 Spotlight: Functional Generalized Empirical Likelihood Estimation for Conditional Moment Restrictions »
Heiner Kremer · Jia-Jie Zhu · Krikamol Muandet · Bernhard Schölkopf -
2021 Workshop: The Neglected Assumptions In Causal Inference »
Niki Kilbertus · Lily Hu · Laura Balzer · Uri Shalit · Alexander D'Amour · Razieh Nabi -
2021 Poster: On Disentangled Representations Learned from Correlated Data »
Frederik Träuble · Elliot Creager · Niki Kilbertus · Francesco Locatello · Andrea Dittadi · Anirudh Goyal · Bernhard Schölkopf · Stefan Bauer -
2021 Oral: On Disentangled Representations Learned from Correlated Data »
Frederik Träuble · Elliot Creager · Niki Kilbertus · Francesco Locatello · Andrea Dittadi · Anirudh Goyal · Bernhard Schölkopf · Stefan Bauer -
2021 Poster: Conditional Distributional Treatment Effect with Kernel Conditional Mean Embeddings and U-Statistic Regression »
Junhyung Park · Uri Shalit · Bernhard Schölkopf · Krikamol Muandet -
2021 Poster: Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction »
Afsaneh Mastouri · Yuchen Zhu · Limor Gultchin · Anna Korba · Ricardo Silva · Matt J. Kusner · Arthur Gretton · Krikamol Muandet -
2021 Spotlight: Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction »
Afsaneh Mastouri · Yuchen Zhu · Limor Gultchin · Anna Korba · Ricardo Silva · Matt J. Kusner · Arthur Gretton · Krikamol Muandet -
2021 Spotlight: Conditional Distributional Treatment Effect with Kernel Conditional Mean Embeddings and U-Statistic Regression »
Junhyung Park · Uri Shalit · Bernhard Schölkopf · Krikamol Muandet -
2018 Poster: Blind Justice: Fairness with Encrypted Sensitive Attributes »
Niki Kilbertus · Adria Gascon · Matt Kusner · Michael Veale · Krishna Gummadi · Adrian Weller -
2018 Oral: Blind Justice: Fairness with Encrypted Sensitive Attributes »
Niki Kilbertus · Adria Gascon · Matt Kusner · Michael Veale · Krishna Gummadi · Adrian Weller -
2018 Poster: Learning Independent Causal Mechanisms »
Giambattista Parascandolo · Niki Kilbertus · Mateo Rojas-Carulla · Bernhard Schölkopf -
2018 Oral: Learning Independent Causal Mechanisms »
Giambattista Parascandolo · Niki Kilbertus · Mateo Rojas-Carulla · Bernhard Schölkopf