Timezone: »
This work extends the theory of identifiability in supervised learning by considering the consequences of having access to a distribution of tasks. In such cases, we show that identifiability is achievable even in the case of regression, extending prior work restricted to the single-task classification case. Furthermore, we show that the existence of a task distribution which defines a conditional prior over latent variables reduces the equivalence class for identifiability to permutations and scaling, a much stronger and more useful result. When we further assume a causal structure over these tasks, our approach enables simple maximum marginal likelihood optimization together with downstream applicability to causal representation learning. Empirically, we validate that our model outperforms more general unsupervised models in recovering canonical representations for arbitrary non-linear data arising from randomly initialized neural networks.
Author Information
Wenlin Chen (University of Cambridge)
Julien Horwood (University of Cambridge)
Juyeon Heo (University of Cambridge)
Jose Miguel Hernandez-Lobato (University of Cambridge)
More from the Same Authors
-
2023 : Minimal Random Code Learning with Mean-KL Parameterization »
Jihao Andreas Lin · Gergely Flamich · Jose Miguel Hernandez-Lobato -
2022 Poster: Adapting the Linearised Laplace Model Evidence for Modern Deep Learning »
Javier Antorán · David Janz · James Allingham · Erik Daxberger · Riccardo Barbano · Eric Nalisnick · Jose Miguel Hernandez-Lobato -
2022 Spotlight: Adapting the Linearised Laplace Model Evidence for Modern Deep Learning »
Javier Antorán · David Janz · James Allingham · Erik Daxberger · Riccardo Barbano · Eric Nalisnick · Jose Miguel Hernandez-Lobato -
2022 Poster: Action-Sufficient State Representation Learning for Control with Structural Constraints »
Biwei Huang · Chaochao Lu · Liu Leqi · Jose Miguel Hernandez-Lobato · Clark Glymour · Bernhard Schölkopf · Kun Zhang -
2022 Spotlight: Action-Sufficient State Representation Learning for Control with Structural Constraints »
Biwei Huang · Chaochao Lu · Liu Leqi · Jose Miguel Hernandez-Lobato · Clark Glymour · Bernhard Schölkopf · Kun Zhang -
2022 Poster: Fast Relative Entropy Coding with A* coding »
Gergely Flamich · Stratis Markou · Jose Miguel Hernandez-Lobato -
2022 Spotlight: Fast Relative Entropy Coding with A* coding »
Gergely Flamich · Stratis Markou · Jose Miguel Hernandez-Lobato -
2021 Poster: Active Slices for Sliced Stein Discrepancy »
Wenbo Gong · Kaibo Zhang · Yingzhen Li · Jose Miguel Hernandez-Lobato -
2021 Spotlight: Active Slices for Sliced Stein Discrepancy »
Wenbo Gong · Kaibo Zhang · Yingzhen Li · Jose Miguel Hernandez-Lobato -
2021 Poster: A Gradient Based Strategy for Hamiltonian Monte Carlo Hyperparameter Optimization »
Andrew Campbell · Wenlong Chen · Vincent Stimper · Jose Miguel Hernandez-Lobato · Yichuan Zhang -
2021 Spotlight: A Gradient Based Strategy for Hamiltonian Monte Carlo Hyperparameter Optimization »
Andrew Campbell · Wenlong Chen · Vincent Stimper · Jose Miguel Hernandez-Lobato · Yichuan Zhang -
2021 Poster: Bayesian Deep Learning via Subnetwork Inference »
Erik Daxberger · Eric Nalisnick · James Allingham · Javier Antorán · Jose Miguel Hernandez-Lobato -
2021 Spotlight: Bayesian Deep Learning via Subnetwork Inference »
Erik Daxberger · Eric Nalisnick · James Allingham · Javier Antorán · Jose Miguel Hernandez-Lobato -
2020 : "Latent Space Optimization with Deep Generative Models" »
Jose Miguel Hernandez-Lobato -
2020 : Invited Talk: Efficient Missing-value Acquisition with Variational Autoencoders »
Jose Miguel Hernandez-Lobato -
2020 Poster: Reinforcement Learning for Molecular Design Guided by Quantum Mechanics »
Gregor Simm · Robert Pinsler · Jose Miguel Hernandez-Lobato -
2020 Poster: A Generative Model for Molecular Distance Geometry »
Gregor Simm · Jose Miguel Hernandez-Lobato -
2019 Poster: Dropout as a Structured Shrinkage Prior »
Eric Nalisnick · Jose Miguel Hernandez-Lobato · Padhraic Smyth -
2019 Oral: Dropout as a Structured Shrinkage Prior »
Eric Nalisnick · Jose Miguel Hernandez-Lobato · Padhraic Smyth -
2019 Poster: EDDI: Efficient Dynamic Discovery of High-Value Information with Partial VAE »
Chao Ma · Sebastian Tschiatschek · Konstantina Palla · Jose Miguel Hernandez-Lobato · Sebastian Nowozin · Cheng Zhang -
2019 Poster: Variational Implicit Processes »
Chao Ma · Yingzhen Li · Jose Miguel Hernandez-Lobato -
2019 Oral: Variational Implicit Processes »
Chao Ma · Yingzhen Li · Jose Miguel Hernandez-Lobato -
2019 Oral: EDDI: Efficient Dynamic Discovery of High-Value Information with Partial VAE »
Chao Ma · Sebastian Tschiatschek · Konstantina Palla · Jose Miguel Hernandez-Lobato · Sebastian Nowozin · Cheng Zhang -
2018 Poster: Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-sensitive Learning »
Stefan Depeweg · Jose Miguel Hernandez-Lobato · Finale Doshi-Velez · Steffen Udluft -
2018 Oral: Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-sensitive Learning »
Stefan Depeweg · Jose Miguel Hernandez-Lobato · Finale Doshi-Velez · Steffen Udluft -
2017 Poster: Parallel and Distributed Thompson Sampling for Large-scale Accelerated Exploration of Chemical Space »
Jose Miguel Hernandez-Lobato · James Requeima · Edward Pyzer-Knapp · Alan Aspuru-Guzik -
2017 Poster: Grammar Variational Autoencoder »
Matt J. Kusner · Brooks Paige · Jose Miguel Hernandez-Lobato -
2017 Talk: Grammar Variational Autoencoder »
Matt J. Kusner · Brooks Paige · Jose Miguel Hernandez-Lobato -
2017 Talk: Parallel and Distributed Thompson Sampling for Large-scale Accelerated Exploration of Chemical Space »
Jose Miguel Hernandez-Lobato · James Requeima · Edward Pyzer-Knapp · Alan Aspuru-Guzik -
2017 Poster: Sequence Tutor: Conservative fine-tuning of sequence generation models with KL-control »
Natasha Jaques · Shixiang Gu · Dzmitry Bahdanau · Jose Miguel Hernandez-Lobato · Richard E Turner · Douglas Eck -
2017 Talk: Sequence Tutor: Conservative fine-tuning of sequence generation models with KL-control »
Natasha Jaques · Shixiang Gu · Dzmitry Bahdanau · Jose Miguel Hernandez-Lobato · Richard E Turner · Douglas Eck