Timezone: »
Empirical risk minimization (ERM) of neural networks is prone to over-reliance on spurious correlations and poor generalization on minority groups. The recent deep feature reweighting technique achieves state-of-the-art group robustness via simple last-layer retraining, but it requires held-out group annotations to construct a group-balanced reweighting dataset. We examine this impractical requirement and find that last-layer retraining can be surprisingly effective without group annotations; in some cases, a significant gain is solely due to class balancing. Moreover, we show that instead of using the entire training dataset for ERM, dependence on spurious correlations can be reduced by holding out a small split of the training dataset for class-balanced last-layer retraining. Our experiments on four benchmarks across vision and language tasks indicate that this method improves worst-group accuracy by up to 17% over class-balanced ERM on the original dataset despite using no additional data or annotations – a surprising and unexplained result given that the two splits have equally drastic group imbalance.
Author Information
Tyler LaBonte (Georgia Institute of Technology)
Vidya Muthukumar (Georgia Institute of Technology)
Abhishek Kumar (Google Brain)
More from the Same Authors
-
2021 : Benign Overfitting in Multiclass Classification: All Roads Lead to Interpolation »
Ke Wang · Vidya Muthukumar · Christos Thrampoulidis -
2021 : Classification and Adversarial Examples in an Overparameterized Linear Model: A Signal-Processing Perspective »
Adhyyan Narang · Vidya Muthukumar · Anant Sahai -
2021 : Estimating Optimal Policy Value in Linear Contextual Bandits beyond Gaussianity »
Jonathan Lee · Weihao Kong · Aldo Pacchiano · Vidya Muthukumar · Emma Brunskill -
2023 : To Aggregate or Not? Learning with Separate Noisy Labels »
Jiaheng Wei · Zhaowei Zhu · Tianyi Luo · Ehsan Amid · Abhishek Kumar · Yang Liu -
2022 Poster: Universal and data-adaptive algorithms for model selection in linear contextual bandits »
Vidya Muthukumar · Akshay Krishnamurthy -
2022 Spotlight: Universal and data-adaptive algorithms for model selection in linear contextual bandits »
Vidya Muthukumar · Akshay Krishnamurthy -
2021 Poster: Implicit rate-constrained optimization of non-decomposable objectives »
Abhishek Kumar · Harikrishna Narasimhan · Andrew Cotter -
2021 Spotlight: Implicit rate-constrained optimization of non-decomposable objectives »
Abhishek Kumar · Harikrishna Narasimhan · Andrew Cotter -
2020 Poster: On Implicit Regularization in $\beta$-VAEs »
Abhishek Kumar · Ben Poole -
2019 : poster session I »
Nicholas Rhinehart · Yunhao Tang · Vinay Prabhu · Dian Ang Yap · Alexander Wang · Marc Finzi · Manoj Kumar · You Lu · Abhishek Kumar · Qi Lei · Michael Przystupa · Nicola De Cao · Polina Kirichenko · Pavel Izmailov · Andrew Wilson · Jakob Kruse · Diego Mesquita · Mario Lezcano Casado · Thomas Müller · Keir Simmons · Andrei Atanov