Timezone: »
Contrastive learning (CL) has emerged as a powerful technique for representation learning, with or without label supervision.However, supervised CL is prone to collapsing representations of subclasses within a class by not capturing all their features, and unsupervised CL may suppress harder class-relevant features by focusing on learning easy class-irrelevant features; both significantly compromise representation quality. Yet, there is no theoretical understanding of \textit{class collapse} or \textit{feature suppression} at \textit{test} time. We provide the first unified theoretically rigorous framework to determine \textit{which} features are learnt by CL. Our analysis indicate that, perhaps surprisingly, bias of (stochastic) gradient descent towards finding simpler solutions is a key factor in collapsing subclass representations and suppressing harder class-relevant features. We also provide the first theoretical explanation for why employingsupervised and unsupervised CL together yields higher-quality representations, even when using commonly-used stochastic gradient methods.
Author Information
Yihao Xue (UCLA)
Siddharth Joshi (UCLA)
Eric Gan (UCLA)
Pin-Yu Chen (IBM Research)
Baharan Mirzasoleiman (UCLA)
More from the Same Authors
-
2021 : Generalizing Adversarial Training to Composite Semantic Perturbations »
Yun-Yun Tsai · Lei Hsiung · Pin-Yu Chen · Tsung-Yi Ho -
2021 : On the Effectiveness of Poisoning against Unsupervised Domain Adaptation »
Akshay Mehra · Bhavya Kailkhura · Pin-Yu Chen · Jihun Hamm -
2021 : CrossWalk: Fairness-enhanced Node Representation Learning »
Ahmad Khajehnejad · Moein Khajehnejad · Krishna Gummadi · Adrian Weller · Baharan Mirzasoleiman -
2022 : Investigating Why Contrastive Learning Benefits Robustness against Label Noise »
Yihao Xue · Kyle Whitecross · Baharan Mirzasoleiman -
2022 : Investigating Why Contrastive Learning Benefits Robustness against Label Noise »
Yihao Xue · Kyle Whitecross · Baharan Mirzasoleiman -
2023 : Which Features are Learned by Contrastive Learning? On the Role of Simplicity Bias in Class Collapse and Feature Suppression »
Yihao Xue · Siddharth Joshi · Eric Gan · Pin-Yu Chen · Baharan Mirzasoleiman -
2023 : Mitigating Spurious Correlations in Multi-modal Models during Fine-tuning »
Yu Yang · Besmira Nushi · Hamid Palangi · Baharan Mirzasoleiman -
2023 : Robust Learning with Progressive Data Expansion Against Spurious Correlation »
Yihe Deng · Yu Yang · Baharan Mirzasoleiman · Quanquan Gu -
2023 : Data-Efficient Contrastive Self-supervised Learning: Most Beneficial Examples for Supervised Learning Contribute the Least »
Siddharth Joshi · Baharan Mirzasoleiman -
2023 : On Robustness-Accuracy Characterization of Large Language Models using Synthetic Datasets »
Ching-Yun (Irene) Ko · Pin-Yu Chen · Payel Das · Yung-Sung Chuang · Luca Daniel -
2023 : Which Features are Learned by Contrastive Learning? On the Role of Simplicity Bias in Class Collapse and Feature Suppression »
Yihao Xue · Siddharth Joshi · Eric Gan · Pin-Yu Chen · Baharan Mirzasoleiman -
2023 Workshop: 2nd ICML Workshop on New Frontiers in Adversarial Machine Learning »
Sijia Liu · Pin-Yu Chen · Dongxiao Zhu · Eric Wong · Kathrin Grosse · Baharan Mirzasoleiman · Sanmi Koyejo -
2023 Oral: Patch-level Routing in Mixture-of-Experts is Provably Sample-efficient for Convolutional Neural Networks »
Mohammed Nowaz Rabbani Chowdhury · Shuai Zhang · Meng Wang · Sijia Liu · Pin-Yu Chen -
2023 Poster: Towards Sustainable Learning: Coresets for Data-efficient Deep Learning »
Yu Yang · Hao Kang · Baharan Mirzasoleiman -
2023 Poster: MultiRobustBench: Benchmarking Robustness Against Multiple Attacks »
Sophie Dai · Saeed Mahloujifar · Chong Xiang · Vikash Sehwag · Pin-Yu Chen · Prateek Mittal -
2023 Poster: Which Features are Learnt by Contrastive Learning? On the Role of Simplicity Bias in Class Collapse and Feature Suppression »
Yihao Xue · Siddharth Joshi · Eric Gan · Pin-Yu Chen · Baharan Mirzasoleiman -
2023 Poster: Mitigating Spurious Correlations in Multi-modal Models during Fine-tuning »
Yu Yang · Besmira Nushi · Hamid Palangi · Baharan Mirzasoleiman -
2023 Poster: Compressed Decentralized Proximal Stochastic Gradient Method for Nonconvex Composite Problems with Heterogeneous Data »
Yonggui Yan · Jie Chen · Pin-Yu Chen · Xiaodong Cui · Songtao Lu · Yangyang Xu -
2023 Poster: Identification of the Adversary from a Single Adversarial Example »
Minhao Cheng · Rui Min · Haochen Sun · Pin-Yu Chen -
2023 Oral: Which Features are Learnt by Contrastive Learning? On the Role of Simplicity Bias in Class Collapse and Feature Suppression »
Yihao Xue · Siddharth Joshi · Eric Gan · Pin-Yu Chen · Baharan Mirzasoleiman -
2023 Poster: Data-Efficient Contrastive Self-supervised Learning: Most Beneficial Examples for Supervised Learning Contribute the Least »
Siddharth Joshi · Baharan Mirzasoleiman -
2023 Poster: Patch-level Routing in Mixture-of-Experts is Provably Sample-efficient for Convolutional Neural Networks »
Mohammed Nowaz Rabbani Chowdhury · Shuai Zhang · Meng Wang · Sijia Liu · Pin-Yu Chen -
2023 Poster: Reprogramming Pretrained Language Models for Antibody Sequence Infilling »
Igor Melnyk · Vijil Chenthamarakshan · Pin-Yu Chen · Payel Das · Amit Dhurandhar · Inkit Padhi · Devleena Das -
2022 : Less Data Can Be More! »
Baharan Mirzasoleiman -
2022 : Not All Poisons are Created Equal: Robust Training against Data Poisoning »
Yu Yang · Baharan Mirzasoleiman -
2022 Poster: Adaptive Second Order Coresets for Data-efficient Machine Learning »
Omead Pooladzandi · David Davini · Baharan Mirzasoleiman -
2022 Poster: Investigating Why Contrastive Learning Benefits Robustness against Label Noise »
Yihao Xue · Kyle Whitecross · Baharan Mirzasoleiman -
2022 Spotlight: Investigating Why Contrastive Learning Benefits Robustness against Label Noise »
Yihao Xue · Kyle Whitecross · Baharan Mirzasoleiman -
2022 Spotlight: Adaptive Second Order Coresets for Data-efficient Machine Learning »
Omead Pooladzandi · David Davini · Baharan Mirzasoleiman -
2022 Poster: Not All Poisons are Created Equal: Robust Training against Data Poisoning »
Yu Yang · Tian Yu Liu · Baharan Mirzasoleiman -
2022 Oral: Not All Poisons are Created Equal: Robust Training against Data Poisoning »
Yu Yang · Tian Yu Liu · Baharan Mirzasoleiman -
2021 : Data-efficient and Robust Learning from Massive Datasets »
Baharan Mirzasoleiman