Timezone: »
Invariant learning methods aim to obtain robust features that can be used in the same way in multiple environments and can generalize out-of-distribution. This paper introduces a novel method to achieve this, called Invariant KNN. We are guided by the idea that robust features should elicit an invariant non-parametric predictor across domains. For this, we create a K-nearest neighbors predictor from each training environment and constrain them to be the same. We experimentally prove that this approach leads to invariant predictors which learn to use the robust features in the data and generalize out-of-distribution. We test our algorithm on a simple but popular benchmark and demonstrate that it is both competitive with other popular algorithms as well as less sensitive to hyperparameter selection.
Author Information
Andrei Nicolicioiu (Mila)
Jerry Huang (Mila - Quebec AI Institute)
Dhanya Sridhar (Université de Montréal and Mila-Quebec AI Institute)
Aaron Courville (University of Montreal)
More from the Same Authors
-
2021 : Gradient Starvation: A Learning Proclivity in Neural Networks »
Mohammad Pezeshki · Sékou-Oumar Kaba · Yoshua Bengio · Aaron Courville · Doina Precup · Guillaume Lajoie -
2022 : Unsupervised Model-based Pre-training for Data-efficient Reinforcement Learning from Pixels »
Sai Rajeswar · Pietro Mazzaglia · Tim Verbelen · Alex Piche · Bart Dhoedt · Aaron Courville · Alexandre Lacoste -
2023 : Spuriosity Didn’t Kill the Classifier: Using Invariant Predictions to Harness Spurious Features »
Cian Eastwood · Shashank Singh · Andrei Nicolicioiu · Marin Vlastelica · Julius von Kügelgen · Bernhard Schölkopf -
2023 : Learning Diverse Features in Vision Transformers for Improved Generalization »
Armand Nicolicioiu · Andrei Nicolicioiu · Bogdan Alexe · Damien Teney -
2023 : Learning with Learning Awareness using Meta-Values »
Tim Cooijmans · Milad Aghajohari · Aaron Courville -
2023 Oral: Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels »
Sai Rajeswar · Pietro Mazzaglia · Tim Verbelen · Alex Piche · Bart Dhoedt · Aaron Courville · Alexandre Lacoste -
2023 Poster: Bigger, Better, Faster: Human-level Atari with human-level efficiency »
Max Schwarzer · Johan Obando Ceron · Aaron Courville · Marc Bellemare · Rishabh Agarwal · Pablo Samuel Castro -
2023 Poster: Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels »
Sai Rajeswar · Pietro Mazzaglia · Tim Verbelen · Alex Piche · Bart Dhoedt · Aaron Courville · Alexandre Lacoste -
2019 Poster: On the Spectral Bias of Neural Networks »
Nasim Rahaman · Aristide Baratin · Devansh Arpit · Felix Draxler · Min Lin · Fred Hamprecht · Yoshua Bengio · Aaron Courville -
2019 Oral: On the Spectral Bias of Neural Networks »
Nasim Rahaman · Aristide Baratin · Devansh Arpit · Felix Draxler · Min Lin · Fred Hamprecht · Yoshua Bengio · Aaron Courville -
2018 Poster: Augmented CycleGAN: Learning Many-to-Many Mappings from Unpaired Data »
Amjad Almahairi · Sai Rajeswar · Alessandro Sordoni · Philip Bachman · Aaron Courville -
2018 Poster: Mutual Information Neural Estimation »
Mohamed Belghazi · Aristide Baratin · Sai Rajeswar · Sherjil Ozair · Yoshua Bengio · R Devon Hjelm · Aaron Courville -
2018 Oral: Augmented CycleGAN: Learning Many-to-Many Mappings from Unpaired Data »
Amjad Almahairi · Sai Rajeswar · Alessandro Sordoni · Philip Bachman · Aaron Courville -
2018 Oral: Mutual Information Neural Estimation »
Mohamed Belghazi · Aristide Baratin · Sai Rajeswar · Sherjil Ozair · Yoshua Bengio · R Devon Hjelm · Aaron Courville -
2017 Poster: A Closer Look at Memorization in Deep Networks »
David Krueger · Yoshua Bengio · Stanislaw Jastrzebski · Maxinder S. Kanwal · Nicolas Ballas · Asja Fischer · Emmanuel Bengio · Devansh Arpit · Tegan Maharaj · Aaron Courville · Simon Lacoste-Julien -
2017 Talk: A Closer Look at Memorization in Deep Networks »
David Krueger · Yoshua Bengio · Stanislaw Jastrzebski · Maxinder S. Kanwal · Nicolas Ballas · Asja Fischer · Emmanuel Bengio · Devansh Arpit · Tegan Maharaj · Aaron Courville · Simon Lacoste-Julien