Timezone: »
As machine learning has been deployed ubiquitously across applications in modern data science, algorithmic fairness has become a great concern. Among them, imposing fairness constraints during learning, i.e. in-processing fair training, has been a popular type of training method because they don't require accessing sensitive attributes during test time in contrast to post-processing methods. While this has been extensively studied in classical machine learning models, their impact on deep neural networks remains unclear. Recent research has shown that adding fairness constraints to the objective function leads to severe over-fitting to fairness criteria in large models, and how to solve this challenge is an important open question. To tackle this, we leverage the wisdom and power of pre-training and fine-tuning and develop a simple but novel framework to train fair neural networks in an efficient and inexpensive way --- last-layer fine-tuning alone can effectively promote fairness in deep neural networks. This framework offers valuable insights into representation learning for training fair neural networks.
Author Information
Yuzhen Mao (Simon Fraser University)
Zhun Deng (Columbia University)
Huaxiu Yao (Stanford University)
Ting Ye (University of Washington)
Kenji Kawaguchi (NUS)
James Zou (Stanford)
More from the Same Authors
-
2021 : Stateful Performative Gradient Descent »
Zachary Izzo · James Zou · Lexing Ying -
2022 : Diversify and Disambiguate: Learning from Underspecified Data »
Yoonho Lee · Huaxiu Yao · Chelsea Finn -
2022 : On the nonlinear correlation of ML performance across data subpopulations »
Weixin Liang · Yining Mao · Yongchan Kwon · Xinyu Yang · James Zou -
2022 : Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time »
Huaxiu Yao · Caroline Choi · Yoonho Lee · Pang Wei Koh · Chelsea Finn -
2022 : MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts »
Weixin Liang · Xinyu Yang · James Zou -
2022 : Diversify and Disambiguate: Learning from Underspecified Data »
Yoonho Lee · Huaxiu Yao · Chelsea Finn -
2022 : Mind the Gap: Understanding the Modality Gap in Multi-modal Contrastive Representation Learning »
Weixin Liang · Yuhui Zhang · Yongchan Kwon · Serena Yeung · James Zou -
2023 : Prospectors: Leveraging Short Contexts to Mine Salient Objects in High-dimensional Imagery »
Gautam Machiraju · Arjun Desai · James Zou · Christopher Re · Parag Mallick -
2023 : Beyond Confidence: Reliable Models Should Also Consider Atypicality »
Mert Yuksekgonul · Linjun Zhang · James Zou · Carlos Guestrin -
2023 : Less is More: Using Multiple LLMs for Applications with Lower Costs »
Lingjiao Chen · Matei Zaharia · James Zou -
2023 Poster: GFlowOut: Dropout with Generative Flow Networks »
Dianbo Liu · Moksh Jain · Bonaventure F. P. Dossou · Qianli Shen · Salem Lahlou · Anirudh Goyal · Nikolay Malkin · Chris Emezue · Dinghuai Zhang · Nadhir Hassen · Xu Ji · Kenji Kawaguchi · Yoshua Bengio -
2023 Poster: Data-Driven Subgroup Identification for Linear Regression »
Zachary Izzo · Ruishan Liu · James Zou -
2023 Poster: Discrete Key-Value Bottleneck »
Frederik Träuble · Anirudh Goyal · Nasim Rahaman · Michael Mozer · Kenji Kawaguchi · Yoshua Bengio · Bernhard Schölkopf -
2023 Poster: Scalable Set Encoding with Universal Mini-Batch Consistency and Unbiased Full Set Gradient Approximation »
Jeffrey Willette · Seanie Lee · Bruno Andreis · Kenji Kawaguchi · Juho Lee · Sung Ju Hwang -
2023 Poster: How Does Information Bottleneck Help Deep Learning? »
Kenji Kawaguchi · Zhun Deng · Xu Ji · Jiaoyang Huang -
2023 Poster: Data-OOB: Out-of-bag Estimate as a Simple and Efficient Data Value »
Yongchan Kwon · James Zou -
2023 Poster: Auxiliary Learning as an Asymmetric Bargaining Game »
Aviv Shamsian · Aviv Navon · Neta Glazer · Kenji Kawaguchi · Gal Chechik · Ethan Fetaya -
2023 Poster: Accuracy on the Curve: On the Nonlinear Correlation of ML Performance Between Data Subpopulations »
Weixin Liang · Yining Mao · Yongchan Kwon · Xinyu Yang · James Zou -
2023 Poster: Discover and Cure: Concept-aware Mitigation of Spurious Correlation »
Shirley Wu · Mert Yuksekgonul · Linjun Zhang · James Zou -
2022 : Invited talk #2 James Zou (Title: Machine learning to make clinical trials more efficient and diverse) »
James Zou -
2022 Workshop: The First Workshop on Pre-training: Perspectives, Pitfalls, and Paths Forward »
Huaxiu Yao · Hugo Larochelle · Percy Liang · Colin Raffel · Jian Tang · Ying WEI · Saining Xie · Eric Xing · Chelsea Finn -
2022 : Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time »
Huaxiu Yao · Caroline Choi · Yoonho Lee · Pang Wei Koh · Chelsea Finn -
2022 : 7-UP: generating in silico CODEX from a small set of immunofluorescence markers »
James Zou -
2022 : Contributed Talk 2: MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts »
Weixin Liang · Xinyu Yang · James Zou -
2022 Poster: When and How Mixup Improves Calibration »
Linjun Zhang · Zhun Deng · Kenji Kawaguchi · James Zou -
2022 Poster: Improving Out-of-Distribution Robustness via Selective Augmentation »
Huaxiu Yao · Yu Wang · Sai Li · Linjun Zhang · Weixin Liang · James Zou · Chelsea Finn -
2022 Spotlight: Improving Out-of-Distribution Robustness via Selective Augmentation »
Huaxiu Yao · Yu Wang · Sai Li · Linjun Zhang · Weixin Liang · James Zou · Chelsea Finn -
2022 Spotlight: When and How Mixup Improves Calibration »
Linjun Zhang · Zhun Deng · Kenji Kawaguchi · James Zou -
2022 Poster: Robustness Implies Generalization via Data-Dependent Generalization Bounds »
Kenji Kawaguchi · Zhun Deng · Kyle Luh · Jiaoyang Huang -
2022 Poster: Meaningfully debugging model mistakes using conceptual counterfactual explanations »
Abubakar Abid · Mert Yuksekgonul · James Zou -
2022 Poster: Multi-Task Learning as a Bargaining Game »
Aviv Navon · Aviv Shamsian · Idan Achituve · Haggai Maron · Kenji Kawaguchi · Gal Chechik · Ethan Fetaya -
2022 Oral: Robustness Implies Generalization via Data-Dependent Generalization Bounds »
Kenji Kawaguchi · Zhun Deng · Kyle Luh · Jiaoyang Huang -
2022 Spotlight: Meaningfully debugging model mistakes using conceptual counterfactual explanations »
Abubakar Abid · Mert Yuksekgonul · James Zou -
2022 Spotlight: Multi-Task Learning as a Bargaining Game »
Aviv Navon · Aviv Shamsian · Idan Achituve · Haggai Maron · Kenji Kawaguchi · Gal Chechik · Ethan Fetaya -
2021 Poster: Optimization of Graph Neural Networks: Implicit Acceleration by Skip Connections and More Depth »
Keyulu Xu · Mozhi Zhang · Stefanie Jegelka · Kenji Kawaguchi -
2021 Spotlight: Optimization of Graph Neural Networks: Implicit Acceleration by Skip Connections and More Depth »
Keyulu Xu · Mozhi Zhang · Stefanie Jegelka · Kenji Kawaguchi -
2019 Poster: Adaptive Monte Carlo Multiple Testing via Multi-Armed Bandits »
Martin Zhang · James Zou · David Tse -
2019 Oral: Adaptive Monte Carlo Multiple Testing via Multi-Armed Bandits »
Martin Zhang · James Zou · David Tse -
2017 Poster: Estimating the unseen from multiple populations »
Aditi Raghunathan · Greg Valiant · James Zou -
2017 Poster: Learning Latent Space Models with Angular Constraints »
Pengtao Xie · Yuntian Deng · Yi Zhou · Abhimanu Kumar · Yaoliang Yu · James Zou · Eric Xing -
2017 Talk: Learning Latent Space Models with Angular Constraints »
Pengtao Xie · Yuntian Deng · Yi Zhou · Abhimanu Kumar · Yaoliang Yu · James Zou · Eric Xing -
2017 Talk: Estimating the unseen from multiple populations »
Aditi Raghunathan · Greg Valiant · James Zou