Timezone: »
Since neural classifiers are known to be sensitive to adversarial perturbations that alter their accuracy, certification methods have been developed to provide provable guarantees on the insensitivity of their predictions to such perturbations. However, in safety-critical applications, the frequentist interpretation of the confidence of a classifier (also known as model calibration) can be of utmost importance. This property can be measured via the Brier Score or the Expected Calibration Error. We show that attacks can significantly harm calibra- tion, and thus propose certified calibration providing worst-case bounds on calibration under adversarial perturbations. Specifically, we produce analytic bounds for the Brier score and approximate bounds via the solution of a mixed-integer program on the Expected Calibration Error.
Author Information
Cornelius Emde (University of Oxford)
Francesco Pinto (University of Oxford)
Thomas Lukasiewicz (TU Wien and University of Oxford)
Phil Torr (Oxford)
Adel Bibi (University of Oxford)
Related Events (a corresponding poster, oral, or spotlight)
-
2023 : Certified Calibration: Bounding Worst-Case Calibration under Adversarial Attacks »
Dates n/a. Room
More from the Same Authors
-
2021 : Combating Adversaries with Anti-Adversaries »
Motasem Alfarra · Juan C Perez · Ali Thabet · Adel Bibi · Phil Torr · Bernard Ghanem -
2021 : Detecting and Quantifying Malicious Activity with Simulation-based Inference »
Andrew Gambardella · Naeemullah Khan · Phil Torr · Atilim Gunes Baydin -
2022 : Make Some Noise: Reliable and Efficient Single-Step Adversarial Training »
Pau de Jorge Aranda · Adel Bibi · Riccardo Volpi · Amartya Sanyal · Phil Torr · Gregory Rogez · Puneet Dokania -
2022 : Catastrophic overfitting is a bug but also a feature »
Guillermo Ortiz Jimenez · Pau de Jorge Aranda · Amartya Sanyal · Adel Bibi · Puneet Dokania · Pascal Frossard · Gregory Rogez · Phil Torr -
2022 : Illusionary Attacks on Sequential Decision Makers and Countermeasures »
Tim Franzmeyer · Joao Henriques · Jakob Foerster · Phil Torr · Adel Bibi · Christian Schroeder -
2022 : How robust are pre-trained models to distribution shift? »
Yuge Shi · Imant Daunhawer · Julia Vogt · Phil Torr · Amartya Sanyal -
2022 : How robust are pre-trained models to distribution shift? »
Yuge Shi · Imant Daunhawer · Julia Vogt · Phil Torr · Amartya Sanyal -
2023 : Illusory Attacks: Detectability Matters in Adversarial Attacks on Sequential Decision-Makers »
Tim Franzmeyer · Stephen Mcaleer · Joao Henriques · Jakob Foerster · Phil Torr · Adel Bibi · Christian Schroeder -
2023 : Certifying Ensembles: A General Certification Theory with S-Lipschitzness »
Aleksandar Petrov · Francisco Eiras · Amartya Sanyal · Phil Torr · Adel Bibi -
2023 : Language Model Tokenizers Introduce Unfairness Between Languages »
Aleksandar Petrov · Emanuele La Malfa · Phil Torr · Adel Bibi -
2023 : Who to imitate: Imitating desired behavior from diverse multi-agent datasets »
Tim Franzmeyer · Jakob Foerster · Edith Elkind · Phil Torr · Joao Henriques -
2023 : Provably Correct Physics-Informed Neural Networks »
Francisco Girbal Eiras · Adel Bibi · Rudy Bunel · Krishnamurthy Dvijotham · Phil Torr · M. Pawan Kumar -
2023 Poster: NP-SemiSeg: When Neural Processes meet Semi-Supervised Semantic Segmentation »
Jianfeng Wang · Daniela Massiceti · Xiaolin Hu · Vladimir Pavlovic · Thomas Lukasiewicz -
2023 Poster: Graph Inductive Biases in Transformers without Message Passing »
Liheng Ma · Chen Lin · Derek Lim · Adriana Romero Soriano · Puneet Dokania · Mark Coates · Phil Torr · Ser Nam Lim -
2023 Poster: Certifying Ensembles: A General Certification Theory with S-Lipschitzness »
Aleksandar Petrov · Francisco Eiras · Amartya Sanyal · Phil Torr · Adel Bibi -
2022 : Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the Age of AI-NIDS »
Christian Schroeder · Yongchao Huang · Phil Torr · Martin Strohmeier -
2022 : Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the Age of AI-NIDS »
Christian Schroeder · Yongchao Huang · Phil Torr · Martin Strohmeier -
2022 Poster: Adversarial Masking for Self-Supervised Learning »
Yuge Shi · Siddharth N · Phil Torr · Adam Kosiorek -
2022 Poster: Universal Hopfield Networks: A General Framework for Single-Shot Associative Memory Models »
Beren Millidge · Tommaso Salvatori · Yuhang Song · Thomas Lukasiewicz · Rafal Bogacz -
2022 Poster: (Non-)Convergence Results for Predictive Coding Networks »
Simon Frieder · Thomas Lukasiewicz -
2022 Poster: NP-Match: When Neural Processes meet Semi-Supervised Learning »
Jianfeng Wang · Thomas Lukasiewicz · Daniela Massiceti · Xiaolin Hu · Vladimir Pavlovic · Alexandros Neophytou -
2022 Spotlight: NP-Match: When Neural Processes meet Semi-Supervised Learning »
Jianfeng Wang · Thomas Lukasiewicz · Daniela Massiceti · Xiaolin Hu · Vladimir Pavlovic · Alexandros Neophytou -
2022 Spotlight: (Non-)Convergence Results for Predictive Coding Networks »
Simon Frieder · Thomas Lukasiewicz -
2022 Spotlight: Adversarial Masking for Self-Supervised Learning »
Yuge Shi · Siddharth N · Phil Torr · Adam Kosiorek -
2022 Spotlight: Universal Hopfield Networks: A General Framework for Single-Shot Associative Memory Models »
Beren Millidge · Tommaso Salvatori · Yuhang Song · Thomas Lukasiewicz · Rafal Bogacz -
2022 Poster: Communicating via Markov Decision Processes »
Samuel Sokota · Christian Schroeder · Maximilian Igl · Luisa Zintgraf · Phil Torr · Martin Strohmeier · Zico Kolter · Shimon Whiteson · Jakob Foerster -
2022 Spotlight: Communicating via Markov Decision Processes »
Samuel Sokota · Christian Schroeder · Maximilian Igl · Luisa Zintgraf · Phil Torr · Martin Strohmeier · Zico Kolter · Shimon Whiteson · Jakob Foerster -
2022 Poster: Knowledge-Grounded Self-Rationalization via Extractive and Natural Language Explanations »
Bodhisattwa Prasad Majumder · Oana-Maria Camburu · Thomas Lukasiewicz · Julian McAuley -
2022 Spotlight: Knowledge-Grounded Self-Rationalization via Extractive and Natural Language Explanations »
Bodhisattwa Prasad Majumder · Oana-Maria Camburu · Thomas Lukasiewicz · Julian McAuley -
2017 Poster: Stabilising Experience Replay for Deep Multi-Agent Reinforcement Learning »
Jakob Foerster · Nantas Nardelli · Gregory Farquhar · Triantafyllos Afouras · Phil Torr · Pushmeet Kohli · Shimon Whiteson -
2017 Talk: Stabilising Experience Replay for Deep Multi-Agent Reinforcement Learning »
Jakob Foerster · Nantas Nardelli · Gregory Farquhar · Triantafyllos Afouras · Phil Torr · Pushmeet Kohli · Shimon Whiteson