Timezone: »

 
Towards Effective Data Poisoning for Imbalanced Classification
Snigdha Sushil Mishra · Hao He · Hao Wang
Event URL: https://openreview.net/forum?id=k7xYHWG21O »

Targeted Clean-label Data Poisoning Attacks (TCPDA) aim to manipulate training samples in a label-consistent manner to gain malicious control over targeted samples' output during deployment. A prominent class of TCDPA methods, gradient-matching based data-poisoning methods, utilize a small subset of training class samples to match the poisoned gradient of a target sample. However, their effectiveness is limited when attacking imbalanced datasets because of gradient mis-match due to training time data balancing techniques like Re-weighting and Re-sampling. In this paper, we propose two modifications that eliminate this gradient-mismatch and thereby enhance the efficacy of gradient-matching-based TCDPA on imbalanced datasets. Our methods achieve notable improvements of up to 32% (Re-sampling) and 51% (Re-weighting) in terms of Attack Effect Success Rate on MNIST and CIFAR10.

Author Information

Snigdha Sushil Mishra (Rutgers University)
Hao He (Massachusetts Institute of Technology)
Hao Wang (Rutgers University)
Hao Wang

Dr. Hao Wang is currently an assistant professor in the department of computer science at Rutgers University. Previously he was a Postdoctoral Associate at the Computer Science & Artificial Intelligence Lab (CSAIL) of MIT, working with Dina Katabi and Tommi Jaakkola. He received his PhD degree from the Hong Kong University of Science and Technology, as the sole recipient of the School of Engineering PhD Research Excellence Award in 2017. He has been a visiting researcher in the Machine Learning Department of Carnegie Mellon University. His research focuses on statistical machine learning, deep learning, and data mining, with broad applications on recommender systems, healthcare, user profiling, social network analysis, text mining, etc. His work on Bayesian deep learning for recommender systems and personalized modeling has inspired hundreds of follow-up works published at top conferences such as AAAI, ICML, IJCAI, KDD, NIPS, SIGIR, and WWW. It has received over 1000 citations, becoming the most cited paper at KDD 2015. In 2015, he was awarded the Microsoft Fellowship in Asia and the Baidu Research Fellowship for his innovation on Bayesian deep learning and its applications on data mining and social network analysis.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors