Timezone: »
Regardless of the particular task we want them to perform in an environment, there are often shared safety constraints we want our agents to respect. For example, regardless of whether it is making a sandwich or clearing the table, a kitchen robot should not break a plate. Manually specifying such a constraint can be both time-consuming and error-prone. We show how to learn constraints from expert demonstrations of safe task completion by extending inverse reinforcement learning (IRL) techniques to the space of constraints. Intuitively, we learn constraints that forbid highly rewarding behavior that the expert could have taken but chose not to. Unfortunately, the constraint learning problem is rather ill-posed and typically leads to overly conservative constraints that forbid all behavior that the expert did not take. We counter this by leveraging diverse demonstrations that naturally occur in multi-task settings to learn a tighter set of constraints. We validate our method with simulation experiments on high-dimensional continuous control tasks.
Author Information
Konwoo Kim (Carnegie Mellon University)
Gokul Swamy (Carnegie Mellon University)
Zuxin Liu (Carnegie Mellon University)
Ding Zhao (Carnegie Mellon University)
Sanjiban Choudhury (Cornell University)
Steven Wu (Carnegie Mellon University)
Related Events (a corresponding poster, oral, or spotlight)
-
2023 : Learning Shared Safety Constraints from Multi-task Demonstrations »
Dates n/a. Room
More from the Same Authors
-
2021 : Towards the Unification and Robustness of Perturbation and Gradient Based Explanations »
· Sushant Agarwal · Shahin Jabbari · Chirag Agarwal · Sohini Upadhyay · Steven Wu · Hima Lakkaraju -
2021 : Strategic Instrumental Variable Regression: Recovering Causal Relationships From Strategic Responses »
Keegan Harris · Dung Ngo · Logan Stapleton · Hoda Heidari · Steven Wu -
2021 : Stateful Strategic Regression »
Keegan Harris · Hoda Heidari · Steven Wu -
2021 : Iterative Methods for Private Synthetic Data: Unifying Framework and New Methods »
Terrance Liu · Giuseppe Vietri · Steven Wu -
2021 : Private Multi-Task Learning: Formulation and Applications to Federated Learning »
Shengyuan Hu · Steven Wu · Virginia Smith -
2021 : Iterative Methods for Private Synthetic Data: Unifying Framework and New Methods »
Terrance Liu · Giuseppe Vietri · Steven Wu -
2021 : Understanding Clipped FedAvg: Convergence and Client-Level Differential Privacy »
xinwei zhang · Xiangyi Chen · Steven Wu · Mingyi Hong -
2021 : Improved Privacy Filters and Odometers: Time-Uniform Bounds in Privacy Composition »
Justin Whitehouse · Aaditya Ramdas · Ryan Rogers · Steven Wu -
2021 : Strategic Instrumental Variable Regression: Recovering Causal Relationships From Strategic Responses »
Keegan Harris · Dung Ngo · Logan Stapleton · Hoda Heidari · Steven Wu -
2021 : Stateful Strategic Regression »
Keegan Harris · Hoda Heidari · Steven Wu -
2021 : Of Moments and Matching: A Game-Theoretic Framework for Closing the Imitation Gap »
Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2021 : Strategic Instrumental Variable Regression: Recovering Causal Relationships From Strategic Responses »
Keegan Harris · Dung Ngo · Logan Stapleton · Hoda Heidari · Steven Wu -
2021 : Scalable Algorithms for Nonlinear Causal Inference »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2021 : Of Moments and Matching: A Game-Theoretic Framework for Closing the Imitation Gap »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2022 : Meta-Learning Adversarial Bandits »
Nina Balcan · Keegan Harris · Mikhail Khodak · Steven Wu -
2022 : Group Distributionally Robust Reinforcement Learning with Hierarchical Latent Variables »
Mengdi Xu · Peide Huang · Visak Kumar · Jielin Qiu · Chao Fang · Kuan-Hui Lee · Xuewei Qi · Henry Lam · Bo Li · Ding Zhao -
2022 : Paper 2: SeasonDepth: Cross-Season Monocular Depth Prediction Dataset and Benchmark under Multiple Environments »
Ding Zhao · Hitesh Arora · Jiacheng Zhu · Zuxin Liu · Wenhao Ding -
2022 : Paper 10: CausalAF: Causal Autoregressive Flow for Safety-Critical Scenes Generation »
Wenhao Ding · Haohong Lin · Bo Li · Ding Zhao · Hitesh Arora -
2023 : DiffScene: Diffusion-Based Safety-Critical Scenario Generation for Autonomous Vehicles »
Chejian Xu · Ding Zhao · Alberto Sngiovanni Vincentelli · Bo Li -
2023 : Complementing a Policy with a Different Observation Space »
Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2023 : Seeing is not Believing: Robust Reinforcement Learning against Spurious Correlation »
Wenhao Ding · Laixi Shi · Yuejie Chi · Ding Zhao -
2023 : Learning from Sparse Offline Datasets via Conservative Density Estimation »
Zhepeng Cen · Zuxin Liu · Zitong Wang · Yihang Yao · Henry Lam · Ding Zhao -
2023 : Adaptive Principal Component Regression with Applications to Panel Data »
Anish Agarwal · Keegan Harris · Justin Whitehouse · Steven Wu -
2023 : Strategyproof Decision-Making in Panel Data Settings and Beyond »
Keegan Harris · Anish Agarwal · Chara Podimata · Steven Wu -
2023 : Offline Reinforcement Learning with Imbalanced Datasets »
Li Jiang · Sijie Cheng · Jielin Qiu · Victor Chan · Ding Zhao -
2023 : Semantically Adversarial Scene Generation with Explicit Knowledge Guidance for Autonomous Driving »
Wenhao Ding · Haohong Lin · Bo Li · Ding Zhao -
2023 : Strategic Apple Tasting »
Keegan Harris · Chara Podimata · Steven Wu -
2023 : Strategyproof Decision-Making in Panel Data Settings and Beyond »
Keegan Harris · Anish Agarwal · Chara Podimata · Steven Wu -
2023 : Complementing a Policy with a Different Observation Space »
Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2023 : Learning Shared Safety Constraints from Multi-task Demonstrations »
Konwoo Kim · Gokul Swamy · Zuxin Liu · Ding Zhao · Sanjiban Choudhury · Steven Wu -
2023 : Strategic Apple Tasting »
Keegan Harris · Chara Podimata · Steven Wu -
2023 : Visual-based Policy Learning with Latent Language Encoding »
Jielin Qiu · Mengdi Xu · William Han · Bo Li · Ding Zhao -
2023 : Can Brain Signals Reveal Inner Alignment with Human Languages? »
Jielin Qiu · William Han · Jiacheng Zhu · Mengdi Xu · Douglas Weber · Bo Li · Ding Zhao -
2023 : Multimodal Representation Learning of Cardiovascular Magnetic Resonance Imaging »
Jielin Qiu · Peide Huang · Makiya Nakashima · Jaehyun Lee · Jiacheng Zhu · Wilson Tang · Pohao Chen · Christopher Nguyen · Byung-Hak Kim · Debbie Kwon · Douglas Weber · Ding Zhao · David Chen -
2023 : Robustness Verification for Perception Models against Camera Motion Perturbations »
Hanjiang Hu · Changliu Liu · Ding Zhao -
2023 Poster: Constrained Decision Transformer for Offline Safe Reinforcement Learning »
Zuxin Liu · Zijian Guo · Yihang Yao · Zhepeng Cen · Wenhao Yu · Tingnan Zhang · Ding Zhao -
2023 Poster: Fully-Adaptive Composition in Differential Privacy »
Justin Whitehouse · Aaditya Ramdas · Ryan Rogers · Steven Wu -
2023 Oral: Nonparametric Extensions of Randomized Response for Private Confidence Sets »
Ian Waudby-Smith · Steven Wu · Aaditya Ramdas -
2023 Poster: Towards Robust and Safe Reinforcement Learning with Benign Off-policy Data »
Zuxin Liu · Zijian Guo · Zhepeng Cen · Huan Zhang · Yihang Yao · Hanjiang Hu · Ding Zhao -
2023 Poster: Nonparametric Extensions of Randomized Response for Private Confidence Sets »
Ian Waudby-Smith · Steven Wu · Aaditya Ramdas -
2023 Poster: Bayesian Reparameterization of Reward-Conditioned Reinforcement Learning with Energy-based Models »
Wenhao Ding · Tong Che · Ding Zhao · Marco Pavone -
2023 Poster: Interpolation for Robust Learning: Data Augmentation on Wasserstein Geodesics »
Jiacheng Zhu · Jielin Qiu · Aritra Guha · Zhuolin Yang · XuanLong Nguyen · Bo Li · Ding Zhao -
2023 Poster: Inverse Reinforcement Learning without Reinforcement Learning »
Gokul Swamy · David Wu · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2023 Poster: Generating Private Synthetic Data with Genetic Algorithms »
Terrance Liu · Jingwu Tang · Giuseppe Vietri · Steven Wu -
2023 Poster: The Virtues of Laziness in Model-based RL: A Unified Objective and Algorithms »
Anirudh Vemula · Yuda Song · Aarti Singh · J. Bagnell · Sanjiban Choudhury -
2022 : Paper 15: On the Robustness of Safe Reinforcement Learning under Observational Perturbations »
Zuxin Liu · Zhepeng Cen · Huan Zhang · Jie Tan · Bo Li · Ding Zhao -
2022 : Paper 16: Constrained Model-based Reinforcement Learning via Robust Planning »
Zuxin Liu · Ding Zhao -
2022 Poster: Information Discrepancy in Strategic Learning »
Yahav Bechavod · Chara Podimata · Steven Wu · Juba Ziani -
2022 Poster: Constrained Variational Policy Optimization for Safe Reinforcement Learning »
Zuxin Liu · Zhepeng Cen · Vladislav Isenbaev · Wei Liu · Steven Wu · Bo Li · Ding Zhao -
2022 Poster: Causal Imitation Learning under Temporally Correlated Noise »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2022 Spotlight: Constrained Variational Policy Optimization for Safe Reinforcement Learning »
Zuxin Liu · Zhepeng Cen · Vladislav Isenbaev · Wei Liu · Steven Wu · Bo Li · Ding Zhao -
2022 Spotlight: Information Discrepancy in Strategic Learning »
Yahav Bechavod · Chara Podimata · Steven Wu · Juba Ziani -
2022 Oral: Causal Imitation Learning under Temporally Correlated Noise »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2022 Poster: Strategic Instrumental Variable Regression: Recovering Causal Relationships From Strategic Responses »
Keegan Harris · Dung Ngo · Logan Stapleton · Hoda Heidari · Steven Wu -
2022 Poster: Personalization Improves Privacy-Accuracy Tradeoffs in Federated Learning »
Alberto Bietti · Chen-Yu Wei · Miroslav Dudik · John Langford · Steven Wu -
2022 Poster: Improved Regret for Differentially Private Exploration in Linear MDP »
Dung Ngo · Giuseppe Vietri · Steven Wu -
2022 Poster: Understanding Clipping for Federated Learning: Convergence and Client-Level Differential Privacy »
xinwei zhang · Xiangyi Chen · Mingyi Hong · Steven Wu · Jinfeng Yi -
2022 Spotlight: Understanding Clipping for Federated Learning: Convergence and Client-Level Differential Privacy »
xinwei zhang · Xiangyi Chen · Mingyi Hong · Steven Wu · Jinfeng Yi -
2022 Spotlight: Improved Regret for Differentially Private Exploration in Linear MDP »
Dung Ngo · Giuseppe Vietri · Steven Wu -
2022 Spotlight: Strategic Instrumental Variable Regression: Recovering Causal Relationships From Strategic Responses »
Keegan Harris · Dung Ngo · Logan Stapleton · Hoda Heidari · Steven Wu -
2022 Spotlight: Personalization Improves Privacy-Accuracy Tradeoffs in Federated Learning »
Alberto Bietti · Chen-Yu Wei · Miroslav Dudik · John Langford · Steven Wu -
2021 : Poster »
Shiji Zhou · Nastaran Okati · Wichinpong Sinchaisri · Kim de Bie · Ana Lucic · Mina Khan · Ishaan Shah · JINGHUI LU · Andreas Kirsch · Julius Frost · Ze Gong · Gokul Swamy · Ah Young Kim · Ahmed Baruwa · Ranganath Krishnan -
2021 Poster: Leveraging Public Data for Practical Private Query Release »
Terrance Liu · Giuseppe Vietri · Thomas Steinke · Jonathan Ullman · Steven Wu -
2021 Spotlight: Leveraging Public Data for Practical Private Query Release »
Terrance Liu · Giuseppe Vietri · Thomas Steinke · Jonathan Ullman · Steven Wu -
2021 Poster: Of Moments and Matching: A Game-Theoretic Framework for Closing the Imitation Gap »
Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2021 Spotlight: Of Moments and Matching: A Game-Theoretic Framework for Closing the Imitation Gap »
Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2021 Poster: Towards the Unification and Robustness of Perturbation and Gradient Based Explanations »
Sushant Agarwal · Shahin Jabbari · Chirag Agarwal · Sohini Upadhyay · Steven Wu · Hima Lakkaraju -
2021 Poster: Incentivizing Compliance with Algorithmic Instruments »
Dung Ngo · Logan Stapleton · Vasilis Syrgkanis · Steven Wu -
2021 Spotlight: Incentivizing Compliance with Algorithmic Instruments »
Dung Ngo · Logan Stapleton · Vasilis Syrgkanis · Steven Wu -
2021 Spotlight: Towards the Unification and Robustness of Perturbation and Gradient Based Explanations »
Sushant Agarwal · Shahin Jabbari · Chirag Agarwal · Sohini Upadhyay · Steven Wu · Hima Lakkaraju