Timezone: »
Evading Black-box Classifiers Without Breaking Eggs
Edoardo Debenedetti · Nicholas Carlini · Florian Tramer
Fri Jul 28 01:10 PM -- 01:20 PM (PDT) @
Event URL: https://arxiv.org/abs/2306.02895 »
Decision-based evasion attacks repeatedly query a black-box classifier to generate adversarial examples.Prior work measures the cost of such attacks by the total number of queries made to the classifier. We argue this metric is flawed. Most security-critical machine learning systems aim to weed out "bad" data (e.g., malware, harmful content, etc). Queries to such systems carry a fundamentally *asymmetric cost*: queries detected as "bad" come at a higher cost because they trigger additional security filters, e.g., usage throttling or account suspension. Yet, we find that existing decision-based attacks issue a large number of "bad" queries, which likely renders them ineffective against security-critical systems. We then design new attacks that reduce the number of bad queries by $1.5$-$7.3\times$, but often at a significant increase in total (non-bad) queries. We thus pose it as an open problem to build black-box attacks that are more effective under realistic cost metrics.
Decision-based evasion attacks repeatedly query a black-box classifier to generate adversarial examples.Prior work measures the cost of such attacks by the total number of queries made to the classifier. We argue this metric is flawed. Most security-critical machine learning systems aim to weed out "bad" data (e.g., malware, harmful content, etc). Queries to such systems carry a fundamentally *asymmetric cost*: queries detected as "bad" come at a higher cost because they trigger additional security filters, e.g., usage throttling or account suspension. Yet, we find that existing decision-based attacks issue a large number of "bad" queries, which likely renders them ineffective against security-critical systems. We then design new attacks that reduce the number of bad queries by $1.5$-$7.3\times$, but often at a significant increase in total (non-bad) queries. We thus pose it as an open problem to build black-box attacks that are more effective under realistic cost metrics.
Author Information
Edoardo Debenedetti (ETH Zürich)
Nicholas Carlini (Google DeepMind)
Florian Tramer (ETH Zurich)
Related Events (a corresponding poster, oral, or spotlight)
-
2023 : Evading Black-box Classifiers Without Breaking Eggs »
Dates n/a. Room
More from the Same Authors
-
2021 : Data Poisoning Won’t Save You From Facial Recognition »
Evani Radiya-Dixit · Florian Tramer -
2021 : Detecting Adversarial Examples Is (Nearly) As Hard As Classifying Them »
Florian Tramer -
2021 : Indicators of Attack Failure: Debugging and Improving Optimization of Adversarial Examples »
Maura Pintor · Luca Demetrio · Angelo Sotgiu · Giovanni Manca · Ambra Demontis · Nicholas Carlini · Battista Biggio · Fabio Roli -
2023 : Backdoor Attacks for In-Context Learning with Language Models »
Nikhil Kandpal · Matthew Jagielski · Florian Tramer · Nicholas Carlini -
2023 Poster: Preprocessors Matter! Realistic Decision-Based Attacks on Machine Learning Systems »
Chawin Sitawarin · Florian Tramer · Nicholas Carlini -
2022 Poster: Detecting Adversarial Examples Is (Nearly) As Hard As Classifying Them »
Florian Tramer -
2022 Oral: Detecting Adversarial Examples Is (Nearly) As Hard As Classifying Them »
Florian Tramer -
2021 : Discussion Panel #2 »
Bo Li · Nicholas Carlini · Andrzej Banburski · Kamalika Chaudhuri · Will Xiao · Cihang Xie -
2021 : Invited Talk #7 »
Nicholas Carlini -
2021 : Contributed Talk #4 »
Florian Tramer -
2021 Poster: Label-Only Membership Inference Attacks »
Christopher Choquette-Choo · Florian Tramer · Nicholas Carlini · Nicolas Papernot -
2021 Spotlight: Label-Only Membership Inference Attacks »
Christopher Choquette-Choo · Florian Tramer · Nicholas Carlini · Nicolas Papernot -
2020 Poster: Fundamental Tradeoffs between Invariance and Sensitivity to Adversarial Perturbations »
Florian Tramer · Jens Behrmann · Nicholas Carlini · Nicolas Papernot · Joern-Henrik Jacobsen -
2019 Workshop: Workshop on the Security and Privacy of Machine Learning »
Nicolas Papernot · Florian Tramer · Bo Li · Dan Boneh · David Evans · Somesh Jha · Percy Liang · Patrick McDaniel · Jacob Steinhardt · Dawn Song