Timezone: »
Contrastive learning (CL) has emerged as a powerful technique for representation learning, with or without label supervision. However, supervised CL is prone to collapsing representations of subclasses within a class by not capturing all their features, and unsupervised CL may suppress harder class-relevant features by focusing on learning easy class-irrelevant features; both significantly compromise representation quality. Yet, there is no theoretical understanding of \textit{class collapse} or \textit{feature suppression} at \textit{test} time. We provide the first unified theoretically rigorous framework to determine \textit{which} features are learnt by CL. Our analysis indicate that, perhaps surprisingly, bias of (stochastic) gradient descent towards finding simpler solutions is a key factor in collapsing subclass representations and suppressing harder class-relevant features. We also provide the first theoretical explanation for why employing supervised and unsupervised CL together yields higher-quality representations, even when using commonly-used stochastic gradient methods.
Author Information
Yihao Xue (UCLA)
Siddharth Joshi (UCLA)
Eric Gan (UCLA)
Pin-Yu Chen (IBM Research AI)
Baharan Mirzasoleiman (UCLA)
More from the Same Authors
-
2021 : CrossWalk: Fairness-enhanced Node Representation Learning »
Ahmad Khajehnejad · Moein Khajehnejad · Krishna Gummadi · Adrian Weller · Baharan Mirzasoleiman -
2022 : Investigating Why Contrastive Learning Benefits Robustness against Label Noise »
Yihao Xue · Kyle Whitecross · Baharan Mirzasoleiman -
2022 : Investigating Why Contrastive Learning Benefits Robustness against Label Noise »
Yihao Xue · Kyle Whitecross · Baharan Mirzasoleiman -
2023 : Which Features are Learned by Contrastive Learning? On the Role of Simplicity Bias in Class Collapse and Feature Suppression »
Yihao Xue · Siddharth Joshi · Eric Gan · Pin-Yu Chen · Baharan Mirzasoleiman -
2023 : Mitigating Spurious Correlations in Multi-modal Models during Fine-tuning »
Yu Yang · Besmira Nushi · Hamid Palangi · Baharan Mirzasoleiman -
2023 : Robust Learning with Progressive Data Expansion Against Spurious Correlation »
Yihe Deng · Yu Yang · Baharan Mirzasoleiman · Quanquan Gu -
2023 : On Robustness-Accuracy Characterization of Large Language Models using Synthetic Datasets »
Ching-Yun (Irene) Ko · Pin-Yu Chen · Payel Das · Yung-Sung Chuang · Luca Daniel -
2023 : Data-Efficient Contrastive Self-supervised Learning: Most Beneficial Examples for Supervised Learning Contribute the Least »
Siddharth Joshi · Baharan Mirzasoleiman -
2023 : Which Features are Learned by Contrastive Learning? On the Role of Simplicity Bias in Class Collapse and Feature Suppression »
Yihao Xue · Siddharth Joshi · Eric Gan · Pin-Yu Chen · Baharan Mirzasoleiman -
2023 Workshop: 2nd ICML Workshop on New Frontiers in Adversarial Machine Learning »
Sijia Liu · Pin-Yu Chen · Dongxiao Zhu · Eric Wong · Kathrin Grosse · Baharan Mirzasoleiman · Sanmi Koyejo -
2023 Poster: Towards Sustainable Learning: Coresets for Data-efficient Deep Learning »
Yu Yang · Hao Kang · Baharan Mirzasoleiman -
2023 Poster: Which Features are Learnt by Contrastive Learning? On the Role of Simplicity Bias in Class Collapse and Feature Suppression »
Yihao Xue · Siddharth Joshi · Eric Gan · Pin-Yu Chen · Baharan Mirzasoleiman -
2023 Poster: Mitigating Spurious Correlations in Multi-modal Models during Fine-tuning »
Yu Yang · Besmira Nushi · Hamid Palangi · Baharan Mirzasoleiman -
2023 Oral: Which Features are Learnt by Contrastive Learning? On the Role of Simplicity Bias in Class Collapse and Feature Suppression »
Yihao Xue · Siddharth Joshi · Eric Gan · Pin-Yu Chen · Baharan Mirzasoleiman -
2023 Poster: Data-Efficient Contrastive Self-supervised Learning: Most Beneficial Examples for Supervised Learning Contribute the Least »
Siddharth Joshi · Baharan Mirzasoleiman -
2022 : Less Data Can Be More! »
Baharan Mirzasoleiman -
2022 : Not All Poisons are Created Equal: Robust Training against Data Poisoning »
Yu Yang · Baharan Mirzasoleiman -
2022 Workshop: New Frontiers in Adversarial Machine Learning »
Sijia Liu · Pin-Yu Chen · Dongxiao Zhu · Eric Wong · Kathrin Grosse · Hima Lakkaraju · Sanmi Koyejo -
2022 Poster: Adaptive Second Order Coresets for Data-efficient Machine Learning »
Omead Pooladzandi · David Davini · Baharan Mirzasoleiman -
2022 Poster: Sharp-MAML: Sharpness-Aware Model-Agnostic Meta Learning »
Momin Abbas · Quan Xiao · Lisha Chen · Pin-Yu Chen · Tianyi Chen -
2022 Poster: Investigating Why Contrastive Learning Benefits Robustness against Label Noise »
Yihao Xue · Kyle Whitecross · Baharan Mirzasoleiman -
2022 Poster: Linearity Grafting: Relaxed Neuron Pruning Helps Certifiable Robustness »
Tianlong Chen · Huan Zhang · Zhenyu Zhang · Shiyu Chang · Sijia Liu · Pin-Yu Chen · Zhangyang “Atlas” Wang -
2022 Spotlight: Investigating Why Contrastive Learning Benefits Robustness against Label Noise »
Yihao Xue · Kyle Whitecross · Baharan Mirzasoleiman -
2022 Spotlight: Sharp-MAML: Sharpness-Aware Model-Agnostic Meta Learning »
Momin Abbas · Quan Xiao · Lisha Chen · Pin-Yu Chen · Tianyi Chen -
2022 Spotlight: Adaptive Second Order Coresets for Data-efficient Machine Learning »
Omead Pooladzandi · David Davini · Baharan Mirzasoleiman -
2022 Spotlight: Linearity Grafting: Relaxed Neuron Pruning Helps Certifiable Robustness »
Tianlong Chen · Huan Zhang · Zhenyu Zhang · Shiyu Chang · Sijia Liu · Pin-Yu Chen · Zhangyang “Atlas” Wang -
2022 Poster: Generalization Guarantee of Training Graph Convolutional Networks with Graph Topology Sampling »
Hongkang Li · Meng Wang · Sijia Liu · Pin-Yu Chen · Jinjun Xiong -
2022 Poster: Not All Poisons are Created Equal: Robust Training against Data Poisoning »
Yu Yang · Tian Yu Liu · Baharan Mirzasoleiman -
2022 Spotlight: Generalization Guarantee of Training Graph Convolutional Networks with Graph Topology Sampling »
Hongkang Li · Meng Wang · Sijia Liu · Pin-Yu Chen · Jinjun Xiong -
2022 Oral: Not All Poisons are Created Equal: Robust Training against Data Poisoning »
Yu Yang · Tian Yu Liu · Baharan Mirzasoleiman -
2022 Poster: Revisiting Contrastive Learning through the Lens of Neighborhood Component Analysis: an Integrated Framework »
Ching-Yun (Irene) Ko · Jeet Mohapatra · Sijia Liu · Pin-Yu Chen · Luca Daniel · Lily Weng -
2022 Spotlight: Revisiting Contrastive Learning through the Lens of Neighborhood Component Analysis: an Integrated Framework »
Ching-Yun (Irene) Ko · Jeet Mohapatra · Sijia Liu · Pin-Yu Chen · Luca Daniel · Lily Weng -
2021 : Data-efficient and Robust Learning from Massive Datasets »
Baharan Mirzasoleiman -
2021 Poster: CRFL: Certifiably Robust Federated Learning against Backdoor Attacks »
Chulin Xie · Minghao Chen · Pin-Yu Chen · Bo Li -
2021 Spotlight: CRFL: Certifiably Robust Federated Learning against Backdoor Attacks »
Chulin Xie · Minghao Chen · Pin-Yu Chen · Bo Li -
2021 Poster: Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design »
yue cao · Payel Das · Vijil Chenthamarakshan · Pin-Yu Chen · Igor Melnyk · Yang Shen -
2021 Spotlight: Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design »
yue cao · Payel Das · Vijil Chenthamarakshan · Pin-Yu Chen · Igor Melnyk · Yang Shen -
2021 Poster: Voice2Series: Reprogramming Acoustic Models for Time Series Classification »
Huck Yang · Yun-Yun Tsai · Pin-Yu Chen -
2021 Spotlight: Voice2Series: Reprogramming Acoustic Models for Time Series Classification »
Huck Yang · Yun-Yun Tsai · Pin-Yu Chen -
2020 Poster: Is There a Trade-Off Between Fairness and Accuracy? A Perspective Using Mismatched Hypothesis Testing »
Sanghamitra Dutta · Dennis Wei · Hazar Yueksel · Pin-Yu Chen · Sijia Liu · Kush Varshney -
2020 Poster: Proper Network Interpretability Helps Adversarial Robustness in Classification »
Akhilan Boopathy · Sijia Liu · Gaoyuan Zhang · Cynthia Liu · Pin-Yu Chen · Shiyu Chang · Luca Daniel -
2020 Poster: Transfer Learning without Knowing: Reprogramming Black-box Machine Learning Models with Scarce Data and Limited Resources »
Yun Yun Tsai · Pin-Yu Chen · Tsung-Yi Ho -
2020 Poster: Fast Learning of Graph Neural Networks with Guaranteed Generalizability: One-hidden-layer Case »
shuai zhang · Meng Wang · Sijia Liu · Pin-Yu Chen · Jinjun Xiong -
2019 Poster: Fast Incremental von Neumann Graph Entropy Computation: Theory, Algorithm, and Applications »
Pin-Yu Chen · Lingfei Wu · Sijia Liu · Indika Rajapakse -
2019 Poster: PROVEN: Verifying Robustness of Neural Networks with a Probabilistic Approach »
Tsui-Wei Weng · Pin-Yu Chen · Lam Nguyen · Mark Squillante · Akhilan Boopathy · Ivan Oseledets · Luca Daniel -
2019 Oral: Fast Incremental von Neumann Graph Entropy Computation: Theory, Algorithm, and Applications »
Pin-Yu Chen · Lingfei Wu · Sijia Liu · Indika Rajapakse -
2019 Oral: PROVEN: Verifying Robustness of Neural Networks with a Probabilistic Approach »
Tsui-Wei Weng · Pin-Yu Chen · Lam Nguyen · Mark Squillante · Akhilan Boopathy · Ivan Oseledets · Luca Daniel